Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Dynamically varying interactions between heregulin and ErbB proteins detected by single-molecule analysis in living cells

Authors: Michio Hiroshima; Mariko Okada-Hatakeyama; Yasushi Sako; Yuko Saeki;

Dynamically varying interactions between heregulin and ErbB proteins detected by single-molecule analysis in living cells

Abstract

Heregulin (HRG) belongs to the family of EGFs and activates the receptor proteins ErbB3 and ErbB4 in a variety of cell types to regulate cell fate. The interactions between HRG and ErbB3/B4 are important to the pathological mechanisms underlying schizophrenia and some cancers. Here, we observed the reaction kinetics between fluorescently labeled single HRG molecules and ErbB3/B4 on the surfaces of MCF-7 human breast cancer cells. The equilibrium association and the dissociation from equilibrium were also measured using single-molecule imaging techniques. The unitary association processes mirrored the EGF and ErbB1 interactions in HeLa cells [Teramura Y, et al. (2006) EMBO J 25:4215–4222], suggesting that the predimerization of the receptors, followed by intermediate formation (between the first and second ligand-binding events to a receptor dimer), accelerated the formation of doubly liganded signaling dimers of the receptor molecules. However, the dissociation analysis suggested that the first HRG dissociation from the doubly liganded dimer was rapid, but the second dissociation from the singly liganded dimer was slow. The dissociation rate constant from the liganded monomer was intermediate. The dynamic changes in the association and dissociation kinetics in relation to the dimerization of ErbB displayed negative cooperativity, which resulted in apparent low- and high-affinity sites of HRG association on the cell surface.

Related Organizations
Keywords

Receptor, ErbB-4, Receptor, ErbB-3, Rhodamines, Neuregulin-1, Cell Membrane, Breast Neoplasms, Receptors, Cell Surface, Ligands, ErbB Receptors, Kinetics, Microscopy, Fluorescence, Models, Chemical, Humans, Female, Dimerization, Fluorescent Dyes, HeLa Cells, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research