Downloads provided by UsageCountsCHD3 Proteins and Polycomb Group Proteins Antagonistically Determine Cell Identity in Arabidopsis
pmid: 19680533
pmc: PMC2718830
CHD3 Proteins and Polycomb Group Proteins Antagonistically Determine Cell Identity in Arabidopsis
Dynamic regulation of chromatin structure is of fundamental importance for modulating genomic activities in higher eukaryotes. The opposing activities of Polycomb group (PcG) and trithorax group (trxG) proteins are part of a chromatin-based cellular memory system ensuring the correct expression of specific transcriptional programs at defined developmental stages. The default silencing activity of PcG proteins is counteracted by trxG proteins that activate PcG target genes and prevent PcG mediated silencing activities. Therefore, the timely expression and regulation of PcG proteins and counteracting trxG proteins is likely to be of fundamental importance for establishing cell identity. Here, we report that the chromodomain/helicase/DNA–binding domain CHD3 proteins PICKLE (PKL) and PICKLE RELATED2 (PKR2) have trxG-like functions in plants and are required for the expression of many genes that are repressed by PcG proteins. The pkl mutant could partly suppress the leaf and flower phenotype of the PcG mutant curly leaf, supporting the idea that CHD3 proteins and PcG proteins antagonistically determine cell identity in plants. The direct targets of PKL in roots include the PcG genes SWINGER and EMBRYONIC FLOWER2 that encode subunits of Polycomb repressive complexes responsible for trimethylating histone H3 at lysine 27 (H3K27me3). Similar to mutants lacking PcG proteins, lack of PKL and PKR2 caused reduced H3K27me3 levels and, therefore, increased expression of a set of PcG protein target genes in roots. Thus, PKL and PKR2 are directly required for activation of PcG protein target genes and in roots are also indirectly required for repression of PcG protein target genes. Reduced PcG protein activity can lead to cell de-differentiation and callus-like tissue formation in pkl pkr2 mutants. Thus, in contrast to mammals, where PcG proteins are required to maintain pluripotency and to prevent cell differentiation, in plants PcG proteins are required to promote cell differentiation by suppressing embryonic development.
PLoS Genetics, 5 (8)
ISSN:1553-7390
ISSN:1553-7404
Eukaryotes, Cells, Arabidopsis, Polycomb-Group Proteins, QH426-470, Plant Roots, Histones, Gene Expression Regulation, Plant, Genetics, Cell Lineage, CHD3 Proteins, PICKLE, Arabidopsis Proteins, DNA Helicases, Gene Expression Regulation, Developmental, Cell Differentiation, Pkl, Repressor Proteins, Polycom group proteins, Trans-Activators, Research Article, Protein Binding
Eukaryotes, Cells, Arabidopsis, Polycomb-Group Proteins, QH426-470, Plant Roots, Histones, Gene Expression Regulation, Plant, Genetics, Cell Lineage, CHD3 Proteins, PICKLE, Arabidopsis Proteins, DNA Helicases, Gene Expression Regulation, Developmental, Cell Differentiation, Pkl, Repressor Proteins, Polycom group proteins, Trans-Activators, Research Article, Protein Binding
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).152 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1% visibility views 54 download downloads 68 - 54views68downloads
Views provided by UsageCounts
Downloads provided by UsageCounts
