Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Catalysis Today
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Monitoring excited state dynamics in cis-[Ru(bpy)2(py)2]2+ by ultrafast synchrotron techniques

Authors: BORFECCHIA, ELISA; GARINO, Claudio; Diego Gianolio; Luca Salassa; GOBETTO, Roberto; LAMBERTI, Carlo;

Monitoring excited state dynamics in cis-[Ru(bpy)2(py)2]2+ by ultrafast synchrotron techniques

Abstract

Abstract Photoactive metal complexes are applied in a variety of fields, including solar energy conversion, catalysis and medicinal chemistry. Their effectiveness depends on the excited-state features that control the nature of photoreaction intermediates and photoproducts. For this reason, the structural determination of light-induced transient species is fundamental for a rational design of novel photoactive metal complexes. Among the available time-resolved methods, synchrotron-based techniques are emerging as successful tools in detecting ultrafast structural changes in molecules. The aim of this contribution is to review the results obtained by our group combining TR-XSS (Time-Resolved X-ray Solution Scattering) and TR-XAS (Time-Resolved X-ray Absorption Spectroscopy) to study the excited state dynamics in cis -[Ru(bpy) 2 (py) 2 ]Cl 2 , a model compound for ligand releasing applications. Besides a comprehensive summary of our previous work, we report here new findings we obtained by analysis of 100 ps-resolution TR-XSS dataset. The potential of these techniques towards applications in catalysis are discussed in comparison to other time resolved spectroscopies.

Country
Italy
Related Organizations
Keywords

metal complexes; photochemistry; synchrotron ultrafast techniques; Time-resolved XAS; Time-resolved X-ray solution scattering; DFT

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
Green