Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cell Calciumarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Calcium
Article . 1997 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Cell Calcium
Article . 1998
versions View all 2 versions

Ethanolminduced intracellular calcium mobilization rapidly alters gene expression in the mouse blastocyst

Authors: U K, Rout; S A, Krawetz; D R, Armant;

Ethanolminduced intracellular calcium mobilization rapidly alters gene expression in the mouse blastocyst

Abstract

The induction of intracellular Ca2+ release in pre-implantation mouse embryos accelerates their subsequent rate of development in vitro through a calmodulin-dependent mechanism [Stachecki J.J., Armant D.R. Transient release of calcium from inositol 1,4,5-trisphosphate-specific stores regulates mouse pre-implantation development. Development 1996; 122: 2485-2496]. To examine the hypothesis that intracellular Ca2+ signaling alters embryonic gene expression, individual transcript levels were compared by mRNA differential display before and 1 h after intracellular Ca2+ mobilization with ethanol in mouse blastocysts. Ten up-regulated and four down-regulated genes were observed, representing 3.5% of approximately 400 transcripts that were resolved. After sequencing, most of the DNA fragments appeared to be novel; however, two amplicons that increased after Ca2+ mobilization were identified as arginase and ubiquitin conjugating enzyme (E2). The up-regulation of arginase mRNA (3.5-fold after 2 h) was confirmed by reverse transcription and the polymerase chain reaction using specific oligonucleotide primers derived from the deduced mouse embryo sequence. A corresponding 2.5-fold increase in arginase enzymatic activity peaked 9 h after ethanol exposure. Increased expression of arginase and other genes may mediate the onset of rapid cell proliferation and differentiation that is induced by Ca2+ signaling during pre-implantation development.

Related Organizations
Keywords

Intracellular Fluid, Male, Blastomeres, Arginase, Base Sequence, Ethanol, Molecular Sequence Data, Gene Expression Regulation, Developmental, Blotting, Northern, Gene Expression Regulation, Enzymologic, Rats, Mice, Inbred C57BL, Mice, Animals, Humans, Calcium, Female, RNA, Messenger, Lysophospholipids, Calcimycin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Average
Top 10%
Top 10%