Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1996 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

cDNA Cloning and Expression of HIP, a Novel Cell Surface Heparan Sulfate/Heparin-binding Protein of Human Uterine Epithelial Cells and Cell Lines

Authors: S, Liu; S E, Smith; J, Julian; L H, Rohde; N J, Karin; D D, Carson;

cDNA Cloning and Expression of HIP, a Novel Cell Surface Heparan Sulfate/Heparin-binding Protein of Human Uterine Epithelial Cells and Cell Lines

Abstract

Heparan sulfate proteoglycans and their corresponding binding sites have been suggested to play an important role during the initial attachment of murine blastocysts to uterine epithelium and human trophoblastic cell lines to uterine epithelial cell lines. Previous studies on RL95 cells, a human uterine epithelial cell line, had characterized a single class of cell surface heparin/heparan sulfate (HP/HS)-binding sites. Three major HP/HS-binding peptide fragments were isolated from cell surfaces by tryptic digestion, and partial amino-terminal amino acid sequence for each peptide fragment was obtained (Raboudi, N., Julian, J., Rohde, L. H., and Carson, D. D. (1992) J. Biol. Chem. 267, 11930-11939). In the current study, using approaches of reverse transcription-polymerase chain reaction and cDNA library screening, we have cloned and expressed a novel, cell surface HP/HS-binding protein, named HP/HS interacting protein (HIP), from RL95 cells. The full-length cDNA of HIP encodes a protein of 159 amino acids with a calculated molecular mass of 17,754 Da and pI of 11.75. Transfection of HIP full-length cDNA into NIH-3T3 cells demonstrated cell surface expression and a size similar to that of HIP expressed by human cells. Predicted amino acid sequence indicates that HIP lacks a membrane spanning region and has no consensus sites for glycosylation. Northern blot analysis detected a single transcript of 1.3 kilobases in both total RNA and poly(A+) RNA. Examination of human cell lines and normal tissues using both Northern blot and Western blot analyses revealed that HIP is expressed at different levels in a variety of human cell lines and normal tissues but absent in some cell lines and some cell types of normal tissues examined. HIP has relatively high homology (approximately 80% both at the levels of nucleotide and protein sequence) to a rodent ribosomal protein L29. Thus, members of the L29 family may be displayed on cell surfaces where they may participate in HP/HS binding events.

Keywords

DNA, Complementary, Base Sequence, Heparin, Molecular Sequence Data, Uterus, 3T3 Cells, Cell Line, Rats, Mice, Animals, Humans, Female, Amino Acid Sequence, Heparitin Sulfate, RNA, Messenger, Cloning, Molecular, Carrier Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Average
Top 10%
Top 10%
gold