Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Pharmacolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Pharmacology
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Norepinephrine Release from the Ischemic Heart Is Greatly Enhanced in Mice Lacking Histamine H3 Receptors

Authors: Motohiro, Koyama; Nahid, Seyedi; Wai-Ping, Fung-Leung; Timothy W, Lovenberg; Roberto, Levi;

Norepinephrine Release from the Ischemic Heart Is Greatly Enhanced in Mice Lacking Histamine H3 Receptors

Abstract

We previously reported that histamine H(3) receptors (H(3)Rs) are present in cardiac sympathetic nerve endings (cSNE) of animals and humans, where they attenuate norepinephrine (NE) release in normal and hyperadrenergic states, such as myocardial ischemia. The recent creation of a transgenic line of mice lacking H(3)R provided us with the opportunity to assess the relevance of H(3)R in the ischemic heart. We isolated SNE from hearts of wild-type (H(3)R(+/+)) and knockout (H(3)R(-/-)) mice and found that basal NE release from H(3)R(-/-) cSNE was approximately 60% greater than that from H(3)R(+/+) cSNE. NE exocytosis evoked by K(+)-induced depolarization of cSNE from H(3)R(+/+) mice was attenuated by activation of either H(3)R or adenosine A(1) receptors (A(1)R). In contrast, NE release from cSNE of H(3)R(-/-) was unaffected by H(3)R agonists, but it was still attenuated by A(1)R activation. When isolated mouse hearts were subjected to ischemia for 20 min, NE overflow into the coronaries was 2-fold greater in the H(3)R(-/-) hearts than in those from H(3)R(+/+) mice. Furthermore, whereas stimulation of H(3)R or A(1)R reduced ischemic NE overflow from H(3)R(+/+) hearts by 50%, only A(1)R, but not H(3)R activation, reduced NE release in H(3)R(-/-). Our data demonstrate that NE release from cSNE can be modulated by various heteroinhibitory receptors (e.g., H(3)R and A(1)R) and that H(3)Rs are particularly important in modulating NE release in myocardial ischemia. Inasmuch as excessive NE release is clinically recognized as a major cause of arrhythmic cardiac dysfunction, our findings reveal a significant cardioprotective role of H(3)R on cSNE.

Related Organizations
Keywords

Male, Mice, Knockout, Mice, Norepinephrine, Sympathetic Nervous System, Myocardial Ischemia, Animals, Receptors, Histamine H3, Exocytosis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Average
Top 10%
Top 10%