Pore mutants of HERG and KvLQT1 downregulate the reciprocal currents in stable cell lines
Pore mutants of HERG and KvLQT1 downregulate the reciprocal currents in stable cell lines
We previously reported a transgenic rabbit model of long QT syndrome based on overexpression of pore mutants of repolarizing K+ channels KvLQT1 (LQT1) and HERG (LQT2).The transgenes in these rabbits eliminated the slow and fast components of the delayed rectifier K+ current ( IKs and IKr, respectively), as expected. Interestingly, the expressed pore mutants of HERG and KvLQT1 downregulated the remaining reciprocal repolarizing currents, IKs and IKr, without affecting the steady-state levels of the native polypeptides. Here, we sought to further explore the functional interactions between HERG and KvLQT1 in heterologous expression systems. Stable Chinese hamster ovary (CHO) cell lines expressing KvLQT1-minK or HERG were transiently transfected with expression vectors coding for mutant or wild-type HERG or KvLQT1. Transiently expressed pore mutant or wild-type KvLQT1 downregulated IKr in HERG stable CHO cell lines by 70% and 44%, respectively. Immunostaining revealed a severalfold lower surface expression of HERG, which could account for the reduction in IKr upon KvLQT1 expression. Deletion of the KvLQT1 NH2-terminus did not abolish the downregulation, suggesting that the interactions between the two channels are mediated through their COOH-termini. Similarly, transiently expressed HERG reduced IKs in KvLQT1-minK stable cells. Coimmunoprecipitations indicated a direct interaction between HERG and KvLQT1, and surface plasmon resonance analysis demonstrated a specific, physical association between the COOH-termini of KvLQT1 and HERG. Here, we present an in vitro model system consistent with the in vivo reciprocal downregulation of repolarizing currents seen in transgenic rabbit models, illustrating the importance of the transfection method when studying heterologous ion channel expression and trafficking. Moreover, our data suggest that interactions between KvLQT1 and HERG are mediated through COOH-termini.
- Albert Einstein College of Medicine United States
- Brown University United States
- Rhode Island Hospital United States
ERG1 Potassium Channel, Patch-Clamp Techniques, Ovary, Action Potentials, Down-Regulation, CHO Cells, Kidney, Transfection, Ether-A-Go-Go Potassium Channels, Cell Line, Electrophysiology, Cricetulus, Cricetinae, KCNQ1 Potassium Channel, Mutation, Animals, Humans, Female, Gene Deletion
ERG1 Potassium Channel, Patch-Clamp Techniques, Ovary, Action Potentials, Down-Regulation, CHO Cells, Kidney, Transfection, Ether-A-Go-Go Potassium Channels, Cell Line, Electrophysiology, Cricetulus, Cricetinae, KCNQ1 Potassium Channel, Mutation, Animals, Humans, Female, Gene Deletion
30 Research products, page 1 of 3
- 2017IsRelatedTo
- 2008IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
