Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genetics and Molecul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics and Molecular Research
Article . 2014 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Syndromic and non-syndromic forms of retinitis pigmentosa: a comprehensive Italian clinical and molecular study reveals new mutations

Authors: PIERROTTET, CHIARA OLGA; M. Zuntini; M. Digiuni; I. Bazzanella; P. Ferri; R. Paderni; L.M. Rossetti; +3 Authors

Syndromic and non-syndromic forms of retinitis pigmentosa: a comprehensive Italian clinical and molecular study reveals new mutations

Abstract

Mutations in more than 60 different genes have been associated with non-syndromic and syndromic retinitis pigmentosa (RP), a heterogeneous group of inherited retinal dystrophies. To increase the understanding of the molecular epidemiology of the disease in Italy, we analyzed 56 patients with syndromic and non-syndromic forms of RP attending the Retinitis Pigmentosa Center of San Paolo Hospital (Milan, Italy). Patients underwent detailed clinical examination. Genomic DNA isolated from peripheral blood samples was screened for mutations in different genes according to RP form by direct sequencing analysis. The impact of novel missense mutations on protein functions was predicted by in silico analysis and protein sequence alignment. Cosegregation analysis was performed between available family members. Forty-one of the 56 probands analyzed had non-syndromic and 15 had syndromic RP forms. Putative disease-causing mutations were identified in 19 of 56 unrelated RP probands. Mutation screening identified a total of 22 different heterozygous variants. Notably, 12 of these putative pathogenic mutations have not been previously reported. New variants were found to be located on the USH2A, RPGR, EYS, and RHO genes. All 3 new variants detected in X-linked RP probands were confirmed in other affected family members. We found a positivity rate of 24.4% and 60% for probands with non-syndromic and syndromic RP, respectively. This is the first report of RPGR X-linked RP proband-ORF15 mutations in Italian patients with X-linked (XL)-RP. In addition, this is the first report of data regarding the association between EYS mutations and non-syndromic RP forms in the Italian population.

Keywords

Adult, Male, Rhodopsin, DNA Mutational Analysis, Molecular Sequence Data, Bardet-Biedl syndrome; Molecular screening; Retinitis pigmentosa; Usher syndrome; Adult; Aged; Amino Acid Sequence; Base Sequence; DNA Mutational Analysis; Extracellular Matrix Proteins; Eye Proteins; Family Health; Female; Genetic Predisposition to Disease; Humans; Italy; Male; Middle Aged; Molecular Sequence Data; Pedigree; Retinitis Pigmentosa; Rhodopsin; Sequence Homology, Amino Acid; Syndrome; Young Adult; Mutation; Molecular Biology; Genetics, Genetics, Humans, Genetic Predisposition to Disease, Amino Acid Sequence, Eye Proteins, Molecular Biology, Aged, Family Health, Extracellular Matrix Proteins, Base Sequence, Sequence Homology, Amino Acid, General Medicine, Middle Aged, Pedigree, Italy, Mutation, Female, Retinitis Pigmentosa

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
    download downloads 23
  • 2
    views
    23
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
35
Top 10%
Top 10%
Top 10%
2
23
Green
gold