Functional Involvement of the Brahma/SWI2-related Gene 1 Protein in Cytochrome P4501A1 Transcription Mediated by the Aryl Hydrocarbon Receptor Complex
pmid: 11805098
Functional Involvement of the Brahma/SWI2-related Gene 1 Protein in Cytochrome P4501A1 Transcription Mediated by the Aryl Hydrocarbon Receptor Complex
Chromatin remodeling is a key step in overcoming the nucleosomal repression of active transcription in eukaryotes. The mammalian SWI/SNF ATP-dependent chromatin-remodeling complexes contain multiple subunits. The ATPase activities in these complexes are attributable to either BRG-1 or the related Brahma protein. The aryl hydrocarbon receptor (AHR), after binding xenobiotic ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), associates with the AHR nuclear translocator (ARNT), and the dimer so formed activates transcription of several genes, including the cytochrome P4501A1 (CYP1A1) gene. We show that BRG-1 potentiates AHR/ARNT-mediated reporter gene activity in a TCDD-dependent fashion in Hepa1c1c7 cells. Introduction of BRG-1 into the BRG-1- and hBrm-deficient SW13 and C33A human cell lines also enhances expression from a transiently transfected AHR/ARNT-dependent reporter gene. Replenishment of BRG-1 to SW13 cells also restores endogenous cytochrome P4501A1 (CYP1A1) gene expression, whereas an ATPase-deficient mutant of BRG-1 is unable to do so. Chromatin immunoprecipitation analysis demonstrated that BRG-1 associates with the enhancer region of the mouse CYP1A1 gene in vivo in a TCDD- and ARNT-dependent fashion, suggesting the specific recruitment of BRG-1 by AHR/ARNT. Finally, we demonstrate that the glutamine-rich subdomain of the transcriptional activation domain of AHR can interact with BRG-1. Together these studies reveal a functional involvement of BRG-1 in activating CYP1A1 gene transcription and implicate the importance of ATP-dependent chromatin remodeling activity on inducible gene expression mediated by AHR/ARNT.
- University of California, Los Angeles United States
Time Factors, Dose-Response Relationship, Drug, Reverse Transcriptase Polymerase Chain Reaction, DNA Helicases, Nuclear Proteins, Ligands, Precipitin Tests, Chromatin, Cell Line, Mice, Adenosine Triphosphate, Receptors, Aryl Hydrocarbon, Cytochrome P-450 CYP1A1, Animals, Humans, Dimerization, Glutathione Transferase, Plasmids, Protein Binding, Transcription Factors
Time Factors, Dose-Response Relationship, Drug, Reverse Transcriptase Polymerase Chain Reaction, DNA Helicases, Nuclear Proteins, Ligands, Precipitin Tests, Chromatin, Cell Line, Mice, Adenosine Triphosphate, Receptors, Aryl Hydrocarbon, Cytochrome P-450 CYP1A1, Animals, Humans, Dimerization, Glutathione Transferase, Plasmids, Protein Binding, Transcription Factors
41 Research products, page 1 of 5
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).95 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
