Powered by OpenAIRE graph

Role of the cystine-knot motif at the C-terminus of rat mucin protein Muc2 in dimer formation and secretion

Authors: S L, Bell; G, Xu; J F, Forstner;

Role of the cystine-knot motif at the C-terminus of rat mucin protein Muc2 in dimer formation and secretion

Abstract

DNA constructs based on the 534-amino-acid C-terminus of rat mucin protein Muc2 (RMC), were transfected into COS cells and the resultant 35S-labelled dimers and monomers were detected by SDS/PAGE of immunoprecipitates. The cystine-knot construct, encoding the C-terminal 115 amino acids, appeared in cell lysates as a 45kDa dimer, but was not secreted. A construct, devoid of the cystine knot, failed to form dimers. Site-specific mutagenesis within the cystine knot was performed on a conserved unpaired cysteine (designated Cys-X), which has been implicated in some cystine-knot-containing growth factors as being important for intermolecular disulphide-bond formation. Dimerization of RMC was effectively abolished. Each cysteine (Cys-1–Cys-6) comprising the three intramolecular disulphide bonds of the cystine knot was then mutated. Dimer formation was impaired in each case, although much less so for the Cys-3 mutant than the others. Abnormal high-molecular-mass, disulphide-dependent aggregates formed with mutations Cys-1, Cys-2, Cys-4 and Cys-5, and were poorly secreted. It is concluded that the intact cystine-knot domain is essential for dimerization of the C-terminal domain of rat Muc2, and that residue Cys-X in the knot plays a key role. The structural integrity of the cystine knot, maintained by intramolecular bonds Cys-1–Cys-4, Cys-2–Cys-5 and Cys-3–Cys-6, also appears to be important for dimerization, probably by allowing correct positioning of the unpaired Cys-X residue for stable intermolecular cystine-bond formation.

Related Organizations
Keywords

Mucin-2, Base Sequence, Mucins, Recombinant Proteins, Rats, Mutagenesis, Site-Directed, Serine, Animals, Cystine, Cysteine, Disulfides, Dimerization, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%