AMPA receptor alterations precede mossy fiber sprouting in young children with temporal lobe epilepsy
pmid: 15145077
AMPA receptor alterations precede mossy fiber sprouting in young children with temporal lobe epilepsy
Following neurological injury early in life numerous events, including excitotoxicity, neural degeneration, gliosis, neosynaptogenesis, and circuitry reorganization, may alone or in concert contribute to hyperexcitability and recurrent seizures in temporal lobe epilepsy. Our studies provide new evidence regarding the temporal sequence of key elements of hippocampal reorganization, mossy fiber sprouting and glutamate receptor subunit up-regulation, in a subset of young temporal lobe epileptic patients. Without evidence of mossy fiber sprouting, the youngest age group (3-10 years old) of mesial temporal lobe epileptic patients demonstrated enhanced glutamate receptor subunit profiles, suggesting that the dendritic change precedes axonal sprouting. However, sclerotic hippocampal specimens from epileptic patients ages 12-15 years old had the characteristic features of glutamate receptor up-regulation and mossy fiber sprouting first identified in the adult, indicating that reconstructed circuits appear early in the course of the disease. Non-sclerotic hippocampal specimens from lesion associated temporal lobe epileptic patients of all age groups showed minimal cell loss, sparse staining of glutamate receptor subunits in the dentate gyrus, and little or no mossy fiber sprouting. These compelling findings suggest a progressive sequence of events in the reorganization of the dentate gyrus of sclerotic hippocampal specimens. We suggest that cell loss and up-regulation of glutamate receptor subunits appear early in temporal lobe epilepsy and contribute to the synaptic plasticity that may facilitate the subsequent sprouting of mossy fiber collaterals which compound an already precipitous state of decline. The combination of pre-synaptic and post-synaptic changes serves as a potential substrate for hyperexcitability.
- St. John Fisher College United States
- University of Rochester Medical Center United States
Male, Neuronal Plasticity, Adolescent, Age Factors, Epilepsy, Temporal Lobe, Child, Preschool, Mossy Fibers, Hippocampal, Humans, Female, Receptors, AMPA, Child
Male, Neuronal Plasticity, Adolescent, Age Factors, Epilepsy, Temporal Lobe, Child, Preschool, Mossy Fibers, Hippocampal, Humans, Female, Receptors, AMPA, Child
20 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
