Powered by OpenAIRE graph

A C-Terminal Lobe of the β Subunit of Na,K-ATPase and H,K-ATPase Resembles Cell Adhesion Molecules

Authors: Elizabeta Bab-Dinitz; Yoav Peleg; Steven J.D. Karlish; Kay E. Gottschalk; Shira Albeck; Vlad Brumfeld;

A C-Terminal Lobe of the β Subunit of Na,K-ATPase and H,K-ATPase Resembles Cell Adhesion Molecules

Abstract

The beta subunit of Na,K-ATPase is required for stabilization and maturation of the catalytic alpha subunits and is also involved in cell adhesion and establishing epithelial cell polarity. However, the mechanism of cell adhesion effects and protein partners of beta are unknown. We have applied fold recognition methods to predict that a C-terminal domain of the beta subunits of Na,K-ATPase and H,K-ATPase has an immunoglobulin-like fold, which resembles cell adhesion molecules. Comparison of the predicted C-terminal domain with a recently published structure of shark rectal gland Na,K-ATPase at 2.4 A in which alpha, beta, and FXYD subunits were resolved confirms that the beta subunit ectodomain contains an immunoglobulin-like structure. Expression in Escherichia coli of a sequence corresponding to the C-terminal domain, followed by its purification, refolding, and circular dichroism analysis, shows that the domain is independently stable with prominent beta sheet secondary structure, as predicted. Proteolytic digestion of the purified detergent-soluble recombinant Na,K-ATPase (alpha1beta1) is also indicative of a stable C-terminal domain of beta in the native complex. The major conclusion of this work is consistent with prior evidence for a role of the beta subunit in cell-cell adhesion, and it attributes that function largely to the C-terminal lobe of the beta ectodomain. In the light of these findings, we discuss its role in cell adhesion and recognition of the beta subunits of Na,K-ATPase, including potential protein partners.

Keywords

Models, Molecular, Protein Folding, Molecular Sequence Data, Immunoglobulins, Peptide Fragments, Protein Structure, Tertiary, Isoenzymes, H(+)-K(+)-Exchanging ATPase, Protein Subunits, Predictive Value of Tests, Structural Homology, Protein, Sharks, Animals, Humans, Amino Acid Sequence, Sodium-Potassium-Exchanging ATPase, Cell Adhesion Molecules, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%