Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1998 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Biochemical Evidence That Small Proline-rich Proteins and Trichohyalin Function in Epithelia by Modulation of the Biomechanical Properties of Their Cornified Cell Envelopes

Authors: P M, Steinert; T, Kartasova; L N, Marekov;

Biochemical Evidence That Small Proline-rich Proteins and Trichohyalin Function in Epithelia by Modulation of the Biomechanical Properties of Their Cornified Cell Envelopes

Abstract

The cornified cell envelope (CE) is a specialized structure involved in barrier function in stratified squamous epithelia, and is assembled by transglutaminase cross-linking of several proteins. Murine forestomach epithelium undergoes particularly rigorous mechanical trauma, and these CEs contain the highest known content of small proline-rich proteins (SPRs). Sequencing analyses of these CEs revealed that SPRs function as cross-bridgers by joining other proteins by use of multiple adjacent glutamines and lysines on only the amino and carboxyl termini and in functionally non-polar ways. Forestomach CEs also use trichohyalin as a novel cross-bridging protein. We performed mathematical modeling of amino acid compositions of the CEs of mouse and human epidermis of different body sites. Although the sum of loricrin + SPRs was conserved, the amount of SPRs varied in relation to the presumed physical requirements of the tissues. Our data suggest that SPRs could serve as modifiers of a composite CE material composed of mostly loricrin; we propose that increasing amounts of cross-bridging SPRs modify the structure of the CE, just as cross-linking proteins strengthen other types of tissues. In this way, different epithelia may use varying amounts of the cross-bridging SPRs to alter the biomechanical properties of the tissue in accordance with specific physical requirements and functions.

Related Organizations
Keywords

Mice, Inbred BALB C, Molecular Sequence Data, Stomach, Cell Polarity, Membrane Proteins, Proteins, Epithelium, Biomechanical Phenomena, Mice, Cross-Linking Reagents, Intermediate Filament Proteins, Cornified Envelope Proline-Rich Proteins, Animals, Humans, Proline-Rich Protein Domains, Amino Acid Sequence, Rabbits, Cloning, Molecular, Protein Precursors, Peptides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 10%
Top 10%
Top 1%
gold