Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neurology
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Variants in KIF1A gene in dominant and sporadic forms of hereditary spastic paraparesis

Authors: Citterio, A.; Arnoldi, A.; Panzeri, E.; Merlini, L.; D'Angelo, M.G.; MUSUMECI, Olimpia; TOSCANO, Antonio; +4 Authors

Variants in KIF1A gene in dominant and sporadic forms of hereditary spastic paraparesis

Abstract

KIF1A gene encodes the kinesin 1a protein, an axonal motor protein working in cargo transport along neurites. Variants in KIF1A were identified in different forms of neurodegenerative diseases with dominant and recessive inheritance. Homozygous recessive mutations were found in the hereditary sensory and autonomic neuropathy type 2, HSAN2 and in a recessive subtype of hereditary spastic paraparesis, SPG30. De novo heterozygous dominant variants were found both in a dominant form of SPG30 (AD-SPG30) with one single family reported and in patients with different forms of progressive neurodegenerative diseases. We report the results of a genetic screening of 192 HSP patients, with the identification of four heterozygous variants in KIF1A in four cases, two of whom with family history for the disease. Three of the four variants fall within the motor domain, a frequent target for variants related to the AD-SPG30 subtype. The fourth variant falls downstream the motor domain in a region lacking any functional domain. The KIF1A-related patients show clinical pictures overlapping the known AD-SPG30 phenotype including pure and complicated forms with few differences. Of note, one of the families, originating from the Sicily island, carries the same variant p.S69L detected in the first AD-SPG30 family of Finnish origin reported; differently from the first one, the latter family shows a wide intra-familial phenotype variability. Overall, these data reveal a very low frequency of the AD-SPG30 subtype while confirming the presence of amino acid residues in the motor domain representing preferential targets for mutations, thereby supporting their functional relevance in kinesin 1a activity.

Keywords

Adult, Male, Spastic Paraplegia, Hereditary, Kinesins, Dominant inheritance; KIF1A; NGS-targeted resequencing; Spastic paraparesis, Middle Aged, Pedigree, Young Adult, Phenotype, dominant inheritance; KIF1A; NGS-targeted resequencing; spastic paraparesis; neurology (clinical), Mutation, Humans, Female, Child, Aged, Genes, Dominant

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
Green
bronze