Comparative transcriptome analysis of Arabidopsis thaliana infested by diamond back moth (Plutella xylostella) larvae reveals signatures of stress response, secondary metabolism, and signalling
Comparative transcriptome analysis of Arabidopsis thaliana infested by diamond back moth (Plutella xylostella) larvae reveals signatures of stress response, secondary metabolism, and signalling
Abstract Background Plants are exposed to attack from a large variety of herbivores. Feeding insects can induce substantial changes of the host plant transcriptome. Arabidopsis thaliana has been established as a relevant system for the discovery of genes associated with response to herbivory, including genes for specialized (i.e. secondary) metabolism as well as genes involved in plant-insect defence signalling. Results Using a 70-mer oligonulceotide microarray covering 26,090 gene-specific elements, we monitored changes of the Arabidopsis leaf transcriptome in response to feeding by diamond back moth (DBM; Plutella xylostella) larvae. Analysis of samples from a time course of one hour to 24 hours following onset of DBM feeding revealed almost three thousand (2,881) array elements (including 2,671 genes with AGI annotations) that were differentially expressed (>2-fold; p[t-test] < 0.05) of which 1,686 also changed more than twofold in expression between at least two time points of the time course with p(ANOVA) < 0.05. While the majority of these transcripts were up-regulated within 8 h upon onset of insect feeding relative to untreated controls, cluster analysis identified several distinct temporal patterns of transcriptome changes. Many of the DBM-induced genes fall into ontology groups annotated as stress response, secondary metabolism and signalling. Among DBM-induced genes associated with plant signal molecules or phytohormones, genes associated with octadecanoid signalling were clearly overrepresented. We identified a substantial number of differentially expressed genes associated with signal transduction in response to DBM feeding, and we compared there expression profiles with those of previously reported transcriptome responses induced by other insect herbivores, specifically Pieris rapae, Frankliniella occidentalis, Bemisia tabaci,Myzus persicae, and Brevicoryne brassicae. Conclusion Arabidopsis responds to feeding DBM larvae with a drastic reprogramming of the transcriptome, which has considerable overlap with the response induced by other insect herbivores. Based on a meta-analysis of microarray data we identified groups of transcription factors that are either affected by multiple forms of biotic or abiotic stress including DBM feeding or, alternatively, were responsive to DBM herbivory but not to most other forms of stress.
- University of Victoria Canada
- National Science Foundation United States
- University of Victoria Canada
- University of Victoria Canada
- UNIVERSITY OF VICTORIA Canada
580, Gene Expression Profiling, Arabidopsis, QH426-470, Moths, Plant Leaves, Plant Growth Regulators, Gene Expression Regulation, Plant, Larva, Genetics, Animals, TP248.13-248.65, Biotechnology, Research Article, Oligonucleotide Array Sequence Analysis, Signal Transduction
580, Gene Expression Profiling, Arabidopsis, QH426-470, Moths, Plant Leaves, Plant Growth Regulators, Gene Expression Regulation, Plant, Larva, Genetics, Animals, TP248.13-248.65, Biotechnology, Research Article, Oligonucleotide Array Sequence Analysis, Signal Transduction
45 Research products, page 1 of 5
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).90 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
