Identification and Characterization of Human UDP-glucuronosyltransferases Responsible for the Glucuronidation of Fraxetin
pmid: 24025985
Identification and Characterization of Human UDP-glucuronosyltransferases Responsible for the Glucuronidation of Fraxetin
Fraxetin, a major constituent of the traditional medicine plant Fraxinus rhynchophylla Hance (Oleaceae), has been found to possess multiple bioactivities. However, the metabolic pathway(s) of fraxetin in human tissues has not been reported yet. This study aimed to characterize the glucuronidation pathway(s) of fraxetin in human tissues. Fraxetin could be metabolized to two glucuronides in human liver microsomes (HLMs). These two glucuronides were biosynthesized and characterized as 7-O-glucuronide (7-O-G) and 8-O-glucuronide (8-O-G). UGT1A1, -1A6, -1A7, -1A8, -1A9 and -1A10 participated in the formation of 7-O-G, while the formation of 8-O-G was catalyzed selectively by UGT1A6 and UGT1A9. UGT1A9 showed the highest catalytic activities in the formation of 7-O-G and 8-O-G. Both kinetic characterization and inhibition assays demonstrated that UGT1A9 played important roles in fraxetin glucuronidations in HLMs, especially in the formation of the major metabolite 8-O-G. Furthermore, the intrinsic clearance of fraxetin in both human liver microsomes and UGT1A9 was greater than that of 7,8-dihydroxylcoumarin, revealing that the addition of a C-6 methoxy group led to the higher metabolic clearance. In summary, the glucuronidation pathways of fraxetin in human liver microsomes were well-characterized, and UGT1A9 was the major isoform responsible for the glucuronidations of fraxetin.
- Dalian Institute of Chemical Physics China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- University of Chinese Academy of Sciences China (People's Republic of)
- Dalian Medical University China (People's Republic of)
Metabolic Clearance Rate, Recombinant Proteins, Substrate Specificity, Isoenzymes, Kinetics, Glucuronides, Liver, Coumarins, UDP-Glucuronosyltransferase 1A9, Microsomes, Liver, Humans, Glucuronosyltransferase, Biotransformation
Metabolic Clearance Rate, Recombinant Proteins, Substrate Specificity, Isoenzymes, Kinetics, Glucuronides, Liver, Coumarins, UDP-Glucuronosyltransferase 1A9, Microsomes, Liver, Humans, Glucuronosyltransferase, Biotransformation
10 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
