Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling

Authors: Chulan, Kwon; Zhe, Han; Eric N, Olson; Deepak, Srivastava;

MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling

Abstract

MicroRNAs (miRNAs) are genomically encoded small RNAs that hybridize with messenger RNAs, resulting in degradation or translational inhibition of targeted transcripts. The potential for miRNAs to regulate cell-lineage determination or differentiation from pluripotent progenitor or stem cells is unknown. Here, we show that microRNA1 ( miR-1 ) is an ancient muscle-specific gene conserved in sequence and expression in Drosophila . Drosophila miR-1 ( dmiR-1 ) is regulated through a serum response factor-like binding site in cardiac progenitor cells. Loss- and gain-of-function studies demonstrated a role for dmiR-1 in modulating cardiogenesis and in maintenance of muscle-gene expression. We provide in vivo evidence that dmiR-1 targets transcripts encoding the Notch ligand Delta, providing a potential mechanism for the expansion of cardiac and muscle progenitor cells and failure of progenitor cell differentiation in some dmiR-1 mutants. These findings demonstrate that dmiR-1 may “fine-tune” critical steps involved in differentiation of cardiac and somatic muscle progenitors and targets a pathway required for progenitor cell specification and asymmetric cell division.

Keywords

Base Sequence, Models, Genetic, Green Fluorescent Proteins, Molecular Sequence Data, Intracellular Signaling Peptides and Proteins, Gene Expression Regulation, Developmental, Membrane Proteins, Cell Differentiation, Ligands, Immunohistochemistry, Models, Biological, MicroRNAs, Gene Expression Regulation, Animals, Cell Lineage, Drosophila, 3' Untranslated Regions, Cell Division, In Situ Hybridization, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    393
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
393
Top 1%
Top 1%
Top 1%
bronze