Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemical Sensesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemical Senses
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemical Senses
Article . 2010 . Peer-reviewed
Data sources: Crossref
Chemical Senses
Article . 2010
versions View all 4 versions

Expression Analysis of the 3 G-Protein Subunits, Gα, Gβ, and Gγ, in the Olfactory Receptor Organs of Adult Drosophila melanogaster

Authors: Boto Fernández, Tamara; Gómez Díaz, Carolina; Alcorta Azcue, Esther;

Expression Analysis of the 3 G-Protein Subunits, Gα, Gβ, and Gγ, in the Olfactory Receptor Organs of Adult Drosophila melanogaster

Abstract

In many species, olfactory transduction is triggered by odorant molecules that interact with olfactory receptors coupled to heterotrimeric G-proteins. The role of G-protein-linked transduction in the olfaction of Drosophila is currently under study. Here, we supply a thorough description of the expression in the olfactory receptor organs (antennae and maxillary palps) of all known Drosophila melanogaster genes that encode for G-proteins. Using RT-polymerase chain reaction, we analyzed 6 Galpha (G(s), G(i), G(q), G(o), G(f), and concertina), 3 Gbeta (G(beta5), G(beta13F), and G(beta76C)), and 2 Ggamma genes (G(gamma1) and G(gamma30A)). We found that all Galpha protein-encoding genes showed expression in both olfactory organs, but G(f) mRNA was not detected in palps. Moreover, all the Gbeta and Ggamma genes are expressed in antennae and palps, except for G(beta76C). To gain insight into the hypothesis of different G-protein subunits mediating differential signaling in olfactory receptor neurons (ORNs), we performed immunohistochemical studies to observe the expression of several Galpha and Gbeta proteins. We found that Gs, Gi, Gq, and G(beta13F) subunits displayed generalized expression in the antennal tissue, including ORNs support cells and glial cells. Finally, complete coexpression was found between Gi and Gq, which are mediators of the cyclic adenosine monophosphate and IP3 transduction cascades, respectively.

Country
Spain
Related Organizations
Keywords

Drosophila melanogaster, GTP-Binding Protein gamma Subunits, GTP-Binding Protein beta Subunits, Animals, Gene Expression, Immunohistochemistry, GTP-Binding Protein alpha Subunits, Olfactory Receptor Neurons

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
Green
bronze