Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Prostaglandins & Oth...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Prostaglandins & Other Lipid Mediators
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Prostaglandin E2 activates cAMP response element-binding protein in glioma cells via a signaling pathway involving PKA-dependent inhibition of ERK

Authors: Philip, Bidwell; Kiwon, Joh; H Anne, Leaver; Maria Teresa, Rizzo;

Prostaglandin E2 activates cAMP response element-binding protein in glioma cells via a signaling pathway involving PKA-dependent inhibition of ERK

Abstract

Prostaglandin E(2) (PGE(2)) plays a critical role in influencing the biological behavior of tumor cells. We previously demonstrated that PGE(2) stimulates human glioma cell growth via activation of protein kinase A (PKA) type II. This study was undertaken to further elucidate the intracellular pathways activated by PGE(2) downstream to PKA. Stimulation of U87-MG glioma cells with PGE(2) increased phosphorylation of the cyclic-AMP response element (CRE) binding protein CREB at Ser-133 and CREB-driven transcription in a dose- and time-dependent manner. Expression of dominant CREB constructs that interfere with CREB phosphorylation at Ser-133 or with its binding to the CRE site markedly decreased PGE(2)-induced CREB activation. Inhibition of PKA by H-89 or expression of a dominant negative PKA construct attenuated PGE(2)-induced CREB activation. Moreover, inhibition of PKA type II decreased PGE(2)-induced CREB-dependent transcription by 45% compared to vehicle-treated cells. To investigate the involvement of additional signaling pathways, U87-MG cells were pretreated with wortmannin or LY294002 to inhibit the PI3-kinase/AKT pathway. Both inhibitors had no effect on PGE(2)-induced CREB phosphorylation and transcriptional activity, suggesting that PGE(2) activates CREB in a PI3-kinase/AKT independent manner. Challenge of U87-MG cells with PGE(2), at concentrations that induced maximal CREB activation, or with forskolin inhibited extracellular signal-regulated kinase (ERK) phosphorylation. Pretreatment of U87-MG cells with the ERK inhibitor PD98059, accentuated ERK inhibition and increased CREB phosphorylation at Ser-133 and CREB-driven transcription stimulated by PGE(2), suggesting that inhibition of ERK contributes to PGE(2)-induced CREB activation. Inhibition of ERK by PGE(2) or by forskolin was rescued by treatment of cells with H-89 or by the dominant negative PKA construct. Moreover, PGE(2) or forskolin inhibited phosphorylation of Raf-1 phosphorylation at Ser-338. Challenge of U87-MG cells with 11-deoxy-PGE(1) increased CREB-driven transcription and stimulated cell growth, while other PGE(2) analogues had no effect. Together our results reveal a novel signaling pathway whereby PGE(2) signals through PKA to inhibit ERK and increase CREB transcriptional activity.

Keywords

Transcription, Genetic, MAP Kinase Signaling System, Glioma, Cyclic AMP-Dependent Protein Kinases, Dinoprostone, Cell Line, Tumor, Serine, Animals, Humans, Alprostadil, Phosphorylation, Cyclic AMP Response Element-Binding Protein, Extracellular Signal-Regulated MAP Kinases, Protein Kinase Inhibitors, Proto-Oncogene Proteins c-akt, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Average
Top 10%