Powered by OpenAIRE graph

Structural Correlates for Enhanced Stability in the E2 DNA-Binding Domain from Bovine Papillomavirus,

Authors: S, Veeraraghavan; C C, Mello; E J, Androphy; J D, Baleja;

Structural Correlates for Enhanced Stability in the E2 DNA-Binding Domain from Bovine Papillomavirus,

Abstract

Papillomaviral E2 proteins participate in viral DNA replication and transcriptional regulation. We have solved the solution structure of the DNA-binding domain of the E2 protein from bovine papillomavirus (BPV-1). The structure calculation used 2222 distance and 158 dihedral angle restraints for the homodimer (202 residues in total), which were derived from homonuclear and heteronuclear multidimensional nuclear magnetic resonance (NMR) spectroscopic data. The root-mean-square deviation for structured regions of the monomer when superimposed to the average is 0.73 +/- 0.10 A for backbone atoms and 1.42 +/- 0.16 A for heavy atoms. The 101 residue construct used in this study (residues 310-410) is about 4.5 kcal/mol more stable than a minimal domain comprising the C-terminal 85 amino acid residues (residues 326-410). The structure of the core domain contained within BPV-1 E2 is similar to the corresponding regions of other papilloma viral E2 proteins. Here, however, the extra N-terminal 16 residues form a flap that covers a cavity at the dimer interface and play a role in DNA binding. Interactions between residues in the N-terminal extension and the core domain correlate with the greater stability of the longer form of the protein relative to the minimal domain.

Related Organizations
Keywords

Models, Molecular, Protein Denaturation, Protein Folding, Crystallography, X-Ray, Peptide Fragments, Protein Structure, Secondary, Protein Structure, Tertiary, DNA-Binding Proteins, Solutions, Structure-Activity Relationship, Viral Proteins, DNA, Viral, Animals, Thermodynamics, Urea, Cattle, Nuclear Magnetic Resonance, Biomolecular, Bovine papillomavirus 1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Top 10%
Top 10%