Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Human Mutationarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Human Mutation
Article . 2005 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
Human Mutation
Article . 2006
versions View all 2 versions

SALL4mutations in Okihiro syndrome (Duane-radial ray syndrome), acro-renal-ocular syndrome, and related disorders

Authors: Kohlhase, Jürgen; Chitayat, David; Kotzot, Dieter; Ceylaner, Serdar; Froster, Ursula G.; Fuchs, Sigrun; Montgomery, Tara; +1 Authors

SALL4mutations in Okihiro syndrome (Duane-radial ray syndrome), acro-renal-ocular syndrome, and related disorders

Abstract

Okihiro/Duane-radial ray syndrome (DRRS) is an autosomal dominant condition characterized by radial ray defects and Duane anomaly (a form of strabismus). Other abnormalities reported in this condition are anal, renal, cardiac, ear, and foot malformations, and hearing loss. The disease is the result of a mutation in the SALL4 gene, a human gene related to the developmental regulator spalt (sal) of Drosophila melanogaster. SALL4 mutations may also cause acro-renal-ocular syndrome (AROS), which differs from DRRS by the presence of structural eye anomalies, and phenotypes similar to thalidomide embryopathy and Holt-Oram syndrome (HOS). The SALL4 gene product is a zinc finger protein that is thought to act as a transcription factor. It contains three highly conserved C2H2 double zinc finger domains, which are evenly distributed. A single C2H2 motif is attached to the second domain, and at the amino terminus SALL4 contains a C2HC motif. Seventeen of the 22 SALL4 mutations known to date (five of which are presented here for the first time) are located in exon 2, and five are located in exon 3. These are nonsense mutations, short duplications, and short deletions. All of the mutations lead to preterminal stop codons and are thought to cause the phenotype via haploinsufficiency. This assumption is supported by the detection of six larger deletions involving the whole gene or single exons. This article summarizes the current knowledge about SALL4 defects and associated syndromes, and describes the clinical distinctions with similar phenotypes caused by other gene defects.

Keywords

Male, Amino Acid Motifs, Zinc Fingers, Exons, Protein Structure, Tertiary, Duane Retraction Syndrome, Phenotype, Mutation, Humans, Abnormalities, Multiple, Female, Genetic Predisposition to Disease, Gene Deletion, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    102
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
102
Top 10%
Top 10%
Top 10%