Powered by OpenAIRE graph
Sciencearrow_drop_down
Science
Article . 2005 . Peer-reviewed
Data sources: Crossref
Science
Article . 2005
versions View all 2 versions

ATM Activation by DNA Double-Strand Breaks Through the Mre11-Rad50-Nbs1 Complex

Authors: Ji-Hoon Lee; Tanya T. Paull;

ATM Activation by DNA Double-Strand Breaks Through the Mre11-Rad50-Nbs1 Complex

Abstract

The ataxia-telangiectasia mutated (ATM) kinase signals the presence of DNA double-strand breaks in mammalian cells by phosphorylating proteins that initiate cell-cycle arrest, apoptosis, and DNA repair. We show that the Mre11-Rad50-Nbs1 (MRN) complex acts as a double-strand break sensor for ATM and recruits ATM to broken DNA molecules. Inactive ATM dimers were activated in vitro with DNA in the presence of MRN, leading to phosphorylation of the downstream cellular targets p53 and Chk2. ATM autophosphorylation was not required for monomerization of ATM by MRN. The unwinding of DNA ends by MRN was essential for ATM stimulation, which is consistent with the central role of single-stranded DNA as an evolutionarily conserved signal for DNA damage.

Related Organizations
Keywords

MRE11 Homologue Protein, DNA Repair, DNA, Single-Stranded, Nuclear Proteins, Cell Cycle Proteins, Ataxia Telangiectasia Mutated Proteins, DNA, Acid Anhydride Hydrolases, Cell Line, DNA-Binding Proteins, Enzyme Activation, DNA Repair Enzymes, Amino Acid Substitution, Mutation, Humans, Nucleic Acid Conformation, Phosphorylation, Dimerization, DNA Damage, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1K
Top 0.1%
Top 1%
Top 0.1%