Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1995 . Peer-reviewed
Data sources: Crossref
Development
Article . 1995
versions View all 2 versions

Axonal localisation of the CAM-like tyrosine phosphatase CRYPα: a signalling molecule of embryonic growth cones

Authors: A W, Stoker; B, Gehrig; F, Haj; B H, Bay;

Axonal localisation of the CAM-like tyrosine phosphatase CRYPα: a signalling molecule of embryonic growth cones

Abstract

ABSTRACT Migrating embryonic growth cones require multiple, membrane-associated signalling molecules to monitor and respond to guidance cues. Here we present the first evidence that vertebrate cell adhesion molecule-like protein tyrosine phosphatases are likely to be components of this signalling system. CRYPα, the gene for an avian cell adhesion molecule-like phosphatase, is strongly expressed in the embryonic nervous system. In this study we have immunolocalised the protein in the early chick embryo and demonstrated its predominant localisation in axons of the central and peripheral nervous systems. This location suggests that the major, early role of the enzyme is in axonal development. In a study of sensory neurites in culture, we furthermore show that this phosphatase localises in migrating growth cones, within both the lamellipodia and filopodia. The dependence of growth cone migration on both cell adhesion and signalling through phosphotyrosine turnover, places the cell adhesion molecule-like CRYPα phosphatase in a position to be a regulator of these processes.

Related Organizations
Keywords

Central Nervous System, Embryonic Induction, Cell Adhesion Molecules, Neuronal, Blotting, Western, Receptor-Like Protein Tyrosine Phosphatases, Chick Embryo, Immunohistochemistry, Nervous System, Axons, Avian Proteins, Isoenzymes, Cell Movement, Peripheral Nervous System, Cell Adhesion, Animals, Protein Tyrosine Phosphatases, Cells, Cultured, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Average
Top 10%
Top 10%