Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Immunology
Article
License: CC BY
Data sources: UnpayWall
The Journal of Immunology
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Modulation of TLR Signaling by Multiple MyD88-Interacting Partners Including Leucine-Rich Repeat Fli-I-Interacting Proteins

Authors: Penggao Dai; Weidong Wu; Taohua Leng; Yanbao Yu; Xian Chen; Ling Xie; Sun Yong Jeong;

Modulation of TLR Signaling by Multiple MyD88-Interacting Partners Including Leucine-Rich Repeat Fli-I-Interacting Proteins

Abstract

Abstract Emerging evidences suggest TLR-mediated signaling is tightly regulated by a specific chain of intracellular protein-protein interactions, some of which are yet to be identified. Previously we utilized a dual-tagging quantitative proteomics approach to uncover MyD88 interactions in LPS-stimulated cells and described the function of Fliih, a leucine-rich repeat (LRR) protein that negatively regulates NF-κB activity. Here we characterize two distinct LRR-binding MyD88 interactors, LRRFIP2 and Flap-1, and found that both are positive regulators of NF-κB activity. Upon LPS stimulation, LRRFIP2 was also found to positively regulate cytokine production in macrophages, suggesting a functional role in TLR4-mediated inflammatory response. Furthermore, we observed that immediately following LPS stimulation both LRRFIP2 and Flap-1 compete with Fliih for interacting with MyD88 to activate the signaling. By using a novel multiplex quantitative proteomic approach, we found that at endogenous levels these positive and negative regulators interact with MyD88 in a timely and orderly manner to differentially mediate the NF-κB activity through the course of signaling from initiation to prolongation, and to repression. Based on these data, we describe a mechanistic model in which selective modulation of TLR signaling is achieved by temporal and dynamic interactions of MyD88 with its regulators.

Keywords

Mice, Inbred C3H, Macrophages, Microfilament Proteins, NF-kappa B, RNA-Binding Proteins, Receptors, Cytoplasmic and Nuclear, Binding, Competitive, Cell Line, Toll-Like Receptor 4, Cytoskeletal Proteins, Mice, Cell Line, Tumor, Myeloid Differentiation Factor 88, Trans-Activators, Animals, Humans, Carrier Proteins, Adaptor Proteins, Signal Transducing, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    82
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
82
Top 10%
Top 10%
Top 10%
hybrid