Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical and Biop...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

The mouse dead-end gene isoform α is necessary for germ cell and embryonic viability

Authors: Ming Zhao; Chitralekha Bhattacharya; Sita Aggarwal; Angabin Matin; Rui Zhu; Marvin L. Meistrich; Madhu Kumar;

The mouse dead-end gene isoform α is necessary for germ cell and embryonic viability

Abstract

Inactivation of the dead-end (Dnd1) gene in the Ter mouse strain results in depletion of primordial germ cells (PGCs) so that mice become sterile. However, on the 129 mouse strain background, loss of Dnd1 also increases testicular germ cell tumor incidence in parallel to PGC depletion. We report that inactivation of Dnd1 also affects embryonic viability in the 129 strain. Mouse Dnd1 encodes two protein isoforms, DND1-isoform alpha (DND1-alpha) and DND1-isoform beta (DND1-beta). Using isoform-specific antibodies, we determined DND1-alpha is expressed in embryos and embryonic gonads whereas DND1-beta expression is restricted to germ cells of the adult testis. Our data implicate DND1-alpha isoform to be necessary for germ cell viability and therefore its loss in Ter mice results in PGC depletion, germ cell tumor development and partial embryonic lethality in the 129 strain.

Related Organizations
Keywords

Male, DNA, Complementary, Sertoli Cells, Cell Survival, Reverse Transcriptase Polymerase Chain Reaction, Embryonic Development, Mice, Inbred Strains, Antibodies, Recombinant Proteins, Neoplasm Proteins, Mice, Germ Cells, Pregnancy, Embryo Loss, Animals, Protein Isoforms, Female, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
bronze