Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Cyclearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Cycle
Article
Data sources: UnpayWall
Cell Cycle
Article . 2006 . Peer-reviewed
Data sources: Crossref
Cell Cycle
Article . 2006
versions View all 2 versions

The Double Life of UPF1 in RNA and DNA Stability Pathways

Authors: Claus M, Azzalin; Joachim, Lingner;

The Double Life of UPF1 in RNA and DNA Stability Pathways

Abstract

The DNA and RNA helicase UPF1 is well known for its central role in Nonsense Mediated RNA Decay (NMD), which promotes degradation of mRNAs containing premature stop codons. However, we have recently demonstrated that human UPF1 is also essential for DNA replication and S phase progression. This function appears to be independent of NMD, which is not required for cell cycle progression. UPF1 physically interacts with the replicative DNA polymerase delta and it associates with chromatin during S phase and upon DNA damage in an ATR-dependent manner. Intriguingly, the human NMD-kinase SMG1 is also involved in genome stability pathways and the human NMD-factor EST1A/SMG6 is telomerase-associated and has been implicated in telomere maintenance. Here we review the recent findings, which uncovered the direct roles of UPF1 and other NMD-factors in DNA replication and genome maintenance pathways and suggest functional connections between RNA and DNA metabolism.

Keywords

DNA Replication, DNA Repair, Trans-Activators, Humans, RNA, DNA, RNA Helicases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
bronze