Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cell Scie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions

Structural diversity of band 4.1 superfamily members

Authors: K, Takeuchi; A, Kawashima; A, Nagafuchi; S, Tsukita;

Structural diversity of band 4.1 superfamily members

Abstract

ABSTRACT Several proteins contain the domain homologous to the N-terminal half of band 4.1 protein, indicating the existence of a superfamily. The members of this ‘band 4.1’ super-family are thought to play crucial roles in the regulation of cytoskeleton-plasma membrane interaction just beneath plasma membranes. We examined the structural diversity of this superfamily by means of the polymerase chain reaction using synthesized mixed primers. We thus identified many members of the band 4.1 superfamily that were expressed in mouse teratocarcinoma F9 cells and mouse brain tissue. In total, 15 cDNA clones were obtained; 8 were identical to the corresponding parts of cDNAs for the known members, while 7 appeared to encode novel proteins (NBL1-7: novel band 4.1-like proteins). Sequence analyses of these clones revealed that the band 4.1 superfamily can be subdivided into 5 gene families; band 4.1 protein, ERM (ezrin/radixin/moesin/merlin/NBL6/NBL7), talin, PTPH1 (PTPH1/PTPMEG/NBL1-3), and NBL4 (NBL4/NBL5) families. The NBL4 family was first identified here, and the full-length cDNA encoding NBL4 was cloned. The deduced amino acid sequence revealed a myristoylation site, as well as phosphorylation sites for A-kinase and tyrosine kinases in its N-terminal half, suggesting its involvement in the phosphorylation-dependent regulation of cellular events just beneath the plasma membrane. In this study, we describe the initial characterization of these new members and discuss the evolution of the band 4.1 superfamily.

Keywords

DNA, Complementary, Base Sequence, Cell Membrane, Erythrocyte Membrane, Molecular Sequence Data, Neuropeptides, Gene Expression, Genetic Variation, Membrane Proteins, Polymerase Chain Reaction, Cell Line, Cytoskeletal Proteins, Mice, Multigene Family, Animals, Amino Acid Sequence, Cloning, Molecular, Conserved Sequence, Phylogeny, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    108
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
108
Top 10%
Top 10%
Top 10%