Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Trafficarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Traffic
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Traffic
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Traffic
Article . 2004
versions View all 3 versions

Characterization of the in Vitro Retrograde Transport of MPR46

Authors: Medigeshi, G. R.; Schu, Peter Valentin;

Characterization of the in Vitro Retrograde Transport of MPR46

Abstract

The mannose 6‐phosphate receptor MPR46 mediates sorting of lysosomal enzymes and recycles between the trans‐Golgi network and endosomes. We characterized the retrograde transport of MPR46 from endosomes to the TGN by an in vitro transport assay using mouse fibroblast cell lines. Sulfation of a modified MPR46 upon entering the TGN is measured. The in vitro retrograde transport is time‐, temperature‐, ATP‐ and cytosol‐dependent. Transport requires the SNARE proteins Vti1a and Syntaxin 16 and the Rab family member Rab6. The transport is sensitive to GTPγS, brefeldin A and independent of TIP47. These data indicate that MPR46 follows an early endosome‐to‐TGN route. Transport is inhibited by MPR46 tail peptide comprising the acidic cluster‐di‐leucine sorting motif to which adaptor proteins AP‐1 and AP‐3 bind. Transport depends on cytosolic AP‐3, but not on cytosolic AP‐1. Residual membrane‐associated AP‐1 may have masked a requirement for cytosolic AP‐1. The competence of membranes from AP‐1‐deficient cells for endosome‐to‐TGN transport in vitro was severely compromised.

Country
Germany
Related Organizations
Keywords

Protein Synthesis Inhibitors, Cytoplasm, Brefeldin A, Adaptor Protein Complex 3, Adaptor Protein Complex 1, Cell Membrane, Intracellular Signaling Peptides and Proteins, Biological Transport, Endosomes, Fibroblasts, Pregnancy Proteins, Perilipin-3, DNA-Binding Proteins, Mice, Protein Transport, Adenosine Triphosphate, Animals, Peptides, Biomarkers, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
Green
bronze