Nesprin provides elastic properties to muscle nuclei by cooperating with spectraplakin and EB1
Nesprin provides elastic properties to muscle nuclei by cooperating with spectraplakin and EB1
Muscle nuclei are exposed to variable cytoplasmic strain produced by muscle contraction and relaxation, but their morphology remains stable. Still, the mechanism responsible for maintaining myonuclear architecture, and its importance, is currently elusive. Herein, we uncovered a unique myonuclear scaffold in Drosophila melanogaster larval muscles, exhibiting both elastic features contributed by the stretching capacity of MSP300 (nesprin) and rigidity provided by a perinuclear network of microtubules stabilized by Shot (spectraplakin) and EB1. Together, they form a flexible perinuclear shield that protects myonuclei from intrinsic or extrinsic forces. The loss of this scaffold resulted in significantly aberrant nuclear morphology and subsequently reduced levels of essential nuclear factors such as lamin A/C, lamin B, and HP1. Overall, we propose a novel mechanism for maintaining myonuclear morphology and reveal its critical link to correct levels of nuclear factors in differentiated muscle fibers. These findings may shed light on the underlying mechanism of various muscular dystrophies.
Cell Nucleus, Microfilament Proteins, Muscle Proteins, Actins, Elasticity, Lamins, Muscle, Striated, Mitochondria, Muscle, Protein Transport, Drosophila melanogaster, Larva, Animals, Drosophila Proteins, Microtubule-Associated Proteins, Research Articles
Cell Nucleus, Microfilament Proteins, Muscle Proteins, Actins, Elasticity, Lamins, Muscle, Striated, Mitochondria, Muscle, Protein Transport, Drosophila melanogaster, Larva, Animals, Drosophila Proteins, Microtubule-Associated Proteins, Research Articles
65 Research products, page 1 of 7
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).63 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
