Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2015 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions

Structure-Based Bacteriophage Screening for AKAP-Selective PKA Regulatory Subunit Variants

Authors: Ryan, Walker-Gray; Matthew G, Gold;

Structure-Based Bacteriophage Screening for AKAP-Selective PKA Regulatory Subunit Variants

Abstract

cAMP-dependent protein kinase (PKA) is tethered at different subcellular locations by A-kinase anchoring proteins (AKAPs). AKAPs present amphipathic helices that bind to the docking and dimerization (D/D) domain of PKA regulatory subunits. Peptide disruptors derived from AKAP anchoring helices are powerful tools for determining whether PKA anchoring is important in different biological processes. Focusing on the reciprocal side of the AKAP-PKA interface can enable development of tools for determining the roles of individual AKAPs. Accordingly, here we describe a bacteriophage screening procedure for identifying variants of PKA regulatory subunit D/D domains that bind selectively to individual AKAPs. This procedure can be adapted for engineering specificity into other shared protein interfaces.

Related Organizations
Keywords

Binding Sites, A Kinase Anchor Proteins, Cyclic AMP-Dependent Protein Kinases, Protein Structure, Secondary, Protein Structure, Tertiary, Substrate Specificity, Molecular Docking Simulation, Bacteriophage T7, Cyclic AMP, Peptides, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average