Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Glycobiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Glycobiology
Article
Data sources: UnpayWall
Glycobiology
Article . 2005 . Peer-reviewed
Data sources: Crossref
Glycobiology
Article . 2006
versions View all 2 versions

Identification of the hydrophobic glycoproteins of Caenorhabditis elegans

Authors: Xiaolian, Fan; Yi-Min, She; Richard D, Bagshaw; John W, Callahan; Harry, Schachter; Don J, Mahuran;

Identification of the hydrophobic glycoproteins of Caenorhabditis elegans

Abstract

Hydrophobic proteins such as integral membrane proteins are difficult to separate, and therefore to study, at a proteomics level. However, the Asn-linked (N-linked) carbohydrates (N-glycans) contained in membrane glycoproteins are important in differentiation, embryogenesis, inflammation, cancer and metastasis, and other vital cellular processes. Thus, the identification of these proteins and their sites of glycosylation in a well-characterized model organism is the first step toward understanding the mechanisms by which N-glycans and their associated proteins function in vivo. In this report, a proteomics method recently developed by our group was applied to identify 117 hydrophobic N-glycosylated proteins of Caenorhabditis elegans extracts by analysis of 195 glycopeptides containing 199 Asn-linked oligosaccharides. Most of the proteins identified are involved in cell adhesion, metabolism, or the transport of small molecules. In addition, there are 18 proteins for which no function is known or predictable by sequence homologies and two proteins which were previously predicted to exist only on the basis of genomic sequences in the C. elegans database. Because N-glycosylation is initiated in the lumen of the endoplasmic reticulum (ER), our data can be used to reassess the previously predicted subcellular localizations of these proteins. As well, the identification of N-glycosylation sites helps establish the membrane topology of the associated glycoproteins. Caenorhabditis elegans strains are presently available with mutations in 17 of the genes we have identified. The powerful genetic tools available for C. elegans can be used to make other strains with mutations in genes encoding N-glycosylated proteins and thereby determine N-glycan function.

Related Organizations
Keywords

Polysaccharides, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Mutation, Animals, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Chromatography, High Pressure Liquid, Glycoproteins, Subcellular Fractions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research