Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Acta Crystallographi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Acta Crystallographica Section D Structural Biology
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Pivotal role of a conserved histidine in Escherichia coli ribonuclease HI as proposed by X-ray crystallography

Authors: Zengwei Liao; Takuji Oyama; Yumi Kitagawa; Katsuo Katayanagi; Kosuke Morikawa; Masayuki Oda;

Pivotal role of a conserved histidine in Escherichia coli ribonuclease HI as proposed by X-ray crystallography

Abstract

The ribonuclease (RNase) H family of enzymes catalyze the specific cleavage of RNA strands of RNA/DNA hybrid duplexes and play an important role in DNA replication and repair. Since the first report of the crystal structure of RNase HI, its catalytic mechanisms, which require metal ions, have been discussed based on numerous structural and functional analyses, including X-ray crystallography. In contrast, the function of the conserved histidine residue (His124 in Escherichia coli) in the flexible loop around the active site remains poorly understood, although an important role was suggested by NMR analyses. Here, novel high-resolution X-ray crystal structures of E. coli RNase HI are described, with a particular focus on the interactions of divalent cations with His124 oriented towards the active site. The enzyme–Mg2+ complex contains two metal ions in the active site, one of which has previously been observed. The second ion lies alongside the first and binds to His124 in an octahedral coordination scheme. In the enzyme–Zn2+ complex a single metal ion was found to bind to the active site, showing a tetrahedral coordination geometry with the surrounding atoms, including His124. These results provide structural evidence that His124 plays a crucial role in the catalytic activity of RNase HI by interacting weakly and transiently with metal ions in the catalytic center.

Keywords

Models, Molecular, Binding Sites, Ribonuclease H, Escherichia coli, Histidine, Crystallography, X-Ray, Research Papers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid