Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gene Expression Patt...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene Expression Patterns
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Comparison of the four mouse fasciclin-containing genes expression patterns during valvuloseptal morphogenesis

Authors: Andrew, Lindsley; Wei, Li; Jian, Wang; Nana, Maeda; Rhonda, Rogers; Simon J, Conway;

Comparison of the four mouse fasciclin-containing genes expression patterns during valvuloseptal morphogenesis

Abstract

All four mammalian fasciclin-containing genes are expressed in the adult valves and are localized in partially overlapping and reciprocal patterns during cardiovascular development. Spatiotemporal comparison of the fasciclin-containing secreted adhesion genes, TGFbeta induced clone H3 (betaigH3) and periostin, revealed that they are co-localized within the outflow tract endocardial cushions, but that betaigH3 expression is restricted to the septal cushions within the atrioventricular canal. Conversely, the fasciclin-containing transmembrane gene, stabilin-1, is predominately expressed in the endocardial layer overlaying the cushions and lining the developing heart. However, expression of the fasciclin-containing transmembrane gene, stabilin-2 is only present in the post-natal mature valve endothelial cells. These data illustrate for the first time that the primitive endocardial cushions dynamically express multiple fasciclin-containing adhesion molecules as they undergo the key steps of seeding, proliferation, differentiation, fusion, mesenchymal condensation and remodeling during mouse heart development.

Keywords

Extracellular Matrix Proteins, DNA, Complementary, Time Factors, Cell Adhesion Molecules, Neuronal, Myocardium, Gene Expression Regulation, Developmental, Blotting, Northern, Heart Valves, Immunohistochemistry, Protein Structure, Tertiary, Mice, Transforming Growth Factor beta, Cell Adhesion, Heart Septum, Animals, Cell Adhesion Molecules, In Situ Hybridization, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%