Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Molecular...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Molecular Biology
Article . 1999 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
versions View all 2 versions

Characterization of two subunits of Arabidopsis 19S proteasome regulatory complex and its possible interaction with the COP9 complex

Authors: S F, Kwok; J M, Staub; X W, Deng;

Characterization of two subunits of Arabidopsis 19S proteasome regulatory complex and its possible interaction with the COP9 complex

Abstract

The nuclear localized, multi-subunit COP9 complex (or COP9 signalosome) is a key developmental modulator involved in repression of photomorphogenesis. In an effort to further define the molecular actions of the COP9 complex, a yeast two hybrid interactive screen was undertaken to identify proteins that could directly interact with one subunit of this complex, namely FUS6/COP11. This screen identified one specific interactive protein, AtS9, that is likely the Arabidopsis non-ATPase S9 (subunit 9) of the 19S regulatory complex from the 26S proteasome. AtS9 specifically interacts with FUS6/COP11 via the C-terminal domain of FUS6/COP11, which is distinct from the N-terminal domain necessary for FUS6/COP11 to interact with itself. As anticipated, AtS9 is not a member of the COP9 complex, but tightly associates with an ATPase subunit of the Arabidopsis 19S proteasome regulatory complex, AtS6A. Since all three proteins, FUS6/COP11, AtS9, and AtS6A, are present as complexed forms in vivo, the observed interaction implies that the COP9 complex may directly interact with the 19S regulatory complex of the 26S proteasome or other potential AtS9-containing complex. This notion is consistent with the parallel tissue-specific expression patterns and the similar, predominantly nuclear localization of both the COP9 complex and the AtS9 protein.

Related Organizations
Keywords

Adenosine Triphosphatases, Cell Nucleus, Proteasome Endopeptidase Complex, Arabidopsis Proteins, COP9 Signalosome Complex, Molecular Sequence Data, Arabidopsis, Gene Dosage, Intracellular Signaling Peptides and Proteins, Chromosome Mapping, Nucleic Acid Hybridization, Precipitin Tests, Cysteine Endopeptidases, GTP-Binding Proteins, Multienzyme Complexes, Multiprotein Complexes, Humans, Amino Acid Sequence, Peptide Hydrolases, Plant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
106
Top 10%
Top 10%
Top 10%
hybrid