The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence
pmid: 20711606
The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence
cis-jasmone (CJ) is a plant-derived chemical that enhances direct and indirect plant defence against herbivorous insects. To study the signalling pathway behind this defence response, we performed microarray-based transcriptome analysis of CJ-treated Arabidopsis plants. CJ influenced a different set of genes from the structurally related oxylipin methyl jasmonate (MeJA), suggesting that CJ triggers a distinct signalling pathway. CJ is postulated to be biosynthetically derived from jasmonic acid, which can boost its own production through transcriptional up-regulation of the octadecanoid biosynthesis genes LOX2, AOS and OPR3. However, no effect on these genes was detected by treatment with CJ. Furthermore, CJ-responsive genes were not affected by mutations in COI1 or JAR1, which are critical signalling components in MeJA response pathway. Conversely, a significant proportion of CJ-inducible genes required the three transcription factors TGA2, TGA5 and TGA6, as well as the GRAS regulatory protein SCARECROW-like 14 (SCL14), indicating regulation by a different pathway from the classical MeJA response. Moreover, the biological importance was demonstrated in that mutations in TGA2, 5, 6, SCL14 and the CJ-inducible gene CYP81D11 blocked CJ-induced attraction of the aphid parasitoid Aphidius ervi, demonstrating that these components play a key role in CJ-induced indirect defence. Collectively, our results identify CJ as a member of the jasmonates that controls indirect plant defence through a distinct signalling pathway.
- Rothamsted Research United Kingdom
- Biotechnology and Biological Sciences Research Council United Kingdom
Arabidopsis Proteins, Gene Expression Profiling, Arabidopsis, Nuclear Proteins, Cyclopentanes, Blotting, Northern, Nucleotidyltransferases, Basic-Leucine Zipper Transcription Factors, Gene Expression Regulation, Plant, Oxylipins, Oligonucleotide Array Sequence Analysis, Signal Transduction
Arabidopsis Proteins, Gene Expression Profiling, Arabidopsis, Nuclear Proteins, Cyclopentanes, Blotting, Northern, Nucleotidyltransferases, Basic-Leucine Zipper Transcription Factors, Gene Expression Regulation, Plant, Oxylipins, Oligonucleotide Array Sequence Analysis, Signal Transduction
16 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).82 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
