Genetic characterization of the Saccharomyces cerevisiae translational initiation suppressors sui1, sui2 and SUI3 and their effects on HIS4 expression.
Genetic characterization of the Saccharomyces cerevisiae translational initiation suppressors sui1, sui2 and SUI3 and their effects on HIS4 expression.
Abstract Saccharomyces cerevisiae strains containing mutations of the HIS4 translation initiation AUG codon were studied by reversion analysis in an attempt to identify components of the translation initiation complex that might participate in initiation site selection during the scanning process. The genetic characterization of these revertants identified three unlinked suppressor loci: SUI1, SUI2 and sui3, which when mutated restored the expression of the HIS4 allele despite the absence of the AUG initiator codon. Both sui1 and sui2 are recessive and cause temperature-sensitive growth on enriched medium. The temperature-sensitive phenotype and the ability to restore HIS4 expression associated with either sui1 or sui2 mutations cosegregate in crosses. SUI3 mutations are dominant and do not alter the thermal profile for growth. None of the mutations at the three loci suppresses known frameshift, missense or nonsense mutations. Each is capable of suppressing the nine different point mutations of the initiator codon at HIS4 or HIS4-lacZ as well as a two base change (ACC) and a three base deletion of the AUG codon, suggesting that the site of suppression resides outside the normal initiator region. sui1 and sui2 suppressor mutations were mapped to chromosomes XIV and X, respectively. Suppression by sui1, sui2 and SUI3 mutations results in 14-, 11- and 47-fold increases, respectively, relative to isogenic parent strains, in the expression of a HIS4 allele lacking the initiator AUG codon. Part of this increase in the HIS4 expression by sui2 and SUI3 can be attributed to increases of HIS4 mRNA levels, presumably mediated by perturbation of the general amino acid control system of yeast.
- DePaul University United States
- Indiana University United States
Genes, Fungal, Temperature, Chromosome Mapping, Saccharomyces cerevisiae, Precipitin Tests, Phenotype, Suppression, Genetic, Gene Expression Regulation, Fungal, Protein Biosynthesis, Codon, Crosses, Genetic
Genes, Fungal, Temperature, Chromosome Mapping, Saccharomyces cerevisiae, Precipitin Tests, Phenotype, Suppression, Genetic, Gene Expression Regulation, Fungal, Protein Biosynthesis, Codon, Crosses, Genetic
13 Research products, page 1 of 2
- 1988IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 1991IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).78 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
