Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
Data sources: UnpayWall
Science
Article . 2019 . Peer-reviewed
Data sources: Crossref
Science
Article . 2020
versions View all 2 versions

Structure of the RSC complex bound to the nucleosome

Authors: Youpi Ye; Hao Wu; Kangjing Chen; Cedric R. Clapier; Naveen Verma; Wenhao Zhang; Haiteng Deng; +3 Authors

Structure of the RSC complex bound to the nucleosome

Abstract

The architecture of the RSC complex RSC is a Snf2-family chromatin remodeler complex that controls the promoter architecture of most of the genes in yeast. Using single-particle cryo–electron microscopy, Ye et al. determined the structure of RSC bound to the nucleosome. The structure reveals the modular architecture of RSC, shows how RSC engages the nucleosome, and explains the remodeling directionality. RSC shows strong similarities to homologous human complexes that are frequently mutated in cancers, and this structure provides valuable information for understanding these systems. Science , this issue p. 838

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Chromosomal Proteins, Non-Histone, Cryoelectron Microscopy, Cell Cycle Proteins, SMARCB1 Protein, Actins, Chromatin, Nucleosomes, DNA-Binding Proteins, Protein Domains, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 1%
Top 10%
Top 1%
bronze
Related to Research communities
Cancer Research