Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Gene
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access LMU
Article . 1994
Data sources: Open Access LMU
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 1994 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Gene
Article . 1994
versions View all 3 versions

XDJ1, a gene encoding a novel non-essential DnaJ homologue from Saccharomyces cerevisiae

Authors: Schwarz, Elisabeth; Westermann, Benedikt; Caplan, Avrom J.; Ludwig, Gabriele; Neupert, Walter;

XDJ1, a gene encoding a novel non-essential DnaJ homologue from Saccharomyces cerevisiae

Abstract

The gene encoding a novel DnaJ-like protein, termed Xdj1, has been identified by amplification of Saccharomyces cerevisiae genomic DNA. An open reading frame of 1380 bp was detected. Disruption of XDJ1 did not yield any detectable new phenotype. A double-deletion strain containing a disruption of both XDJ1 and YDJ1, another gene coding for a DnaJ-like protein, was still viable. Under a variety of growth conditions, no XDJ1 transcripts could be detected by Northern blot analysis and no translation product was found by immunoblotting with antibody against Xdj1 produced in Escherichia coli. Thus, XDJ1 is either expressed only under very specific conditions or represents a silent gene.

Keywords

Saccharomyces cerevisiae Proteins, Base Sequence, Sequence Homology, Amino Acid, Escherichia coli Proteins, Genes, Fungal, Molecular Sequence Data, Saccharomyces cerevisiae, HSP40 Heat-Shock Proteins, Fungal Proteins, Open Reading Frames, Mutation, Amino Acid Sequence, Cloning, Molecular, DNA, Fungal, Heat-Shock Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Top 10%
Top 10%
Green
bronze