Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

A kinase-regulated mechanism controls CFTR channel gating by disrupting bivalent PDZ domain interactions

Authors: Viswanathan, Raghuram; Hayley, Hormuth; J Kevin, Foskett;

A kinase-regulated mechanism controls CFTR channel gating by disrupting bivalent PDZ domain interactions

Abstract

Dynamic regulation of ion channels is critical for maintaining fluid balance in epithelial tissues. Cystic fibrosis, a genetic disease characterized by impaired fluid transport in epithelial tissues, is caused by dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) Cl - channel activity. Recent studies have shown that binding of PSD-95/Dlg/ZO-1 (PDZ) domain proteins to CFTR is important for retaining it at the apical membrane and for regulating its channel activity. Here, we describe a phosphorylation mechanism that regulates CFTR channel activity, which is mediated by PDZ domains. The Na + /H + exchanger regulatory factor (NHERF) binds to CFTR and increases its open probability ( P o ). Protein kinase C disrupts the stimulatory effect of NHERF on CFTR channel P o . Phosphorylation by PKC of Ser-162 in the PDZ2 domain of NHERF is critical for this functional effect. Furthermore, a mutation in PDZ2 that mimics phosphorylation decreases CFTR binding and disrupts the ability of NHERF PDZ1–2 to stimulate CFTR channel P o . Our results identify a role for PKC and suggest that phosphorylation of NHERF PDZ2 domain may be an important mechanism for regulating CFTR channel activity.

Related Organizations
Keywords

Ions, Aspartic Acid, Dose-Response Relationship, Drug, Sequence Homology, Amino Acid, Molecular Sequence Data, Cystic Fibrosis Transmembrane Conductance Regulator, Nerve Tissue Proteins, CHO Cells, Precipitin Tests, Protein Structure, Tertiary, Electrophysiology, Epitopes, Cross-Linking Reagents, Cricetinae, Mutation, Animals, Humans, Amino Acid Sequence, Phosphorylation, Protein Kinase C

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 10%
Top 1%
bronze