Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genes to Cellsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Genes to Cells
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Genes to Cells
Article . 2017
versions View all 2 versions

Chromosomal location of the DnaA‐reactivating sequence DARS2 is important to regulate timely initiation of DNA replication in Escherichia coli

Authors: Yukie, Inoue; Hiroyuki, Tanaka; Kazutoshi, Kasho; Kazuyuki, Fujimitsu; Taku, Oshima; Tsutomu, Katayama;

Chromosomal location of the DnaA‐reactivating sequence DARS2 is important to regulate timely initiation of DNA replication in Escherichia coli

Abstract

In Escherichia coli, the initiator protein ATP‐DnaA promotes initiation of chromosome replication in a timely manner. After initiation, DnaA‐bound ATP is hydrolyzed to yield ADP‐DnaA, which is inactive in initiation. DnaA‐reactivating sequences (DARS1 and DARS2) on the chromosome have predominant roles in catalysis of nucleotide exchange, producing ATP‐DnaA from ADP‐DnaA, which is prerequisite for timely initiation. Both DARS sequences have a core region containing a cluster of three DnaA‐binding sites. DARS2 is more effective in vivo than DARS1, and timely activation of DARS2 depends on binding of two nucleoid‐associated proteins, IHF and Fis. DARS2 is located centrally between the chromosomal replication origin oriC and the terminus region terC. We constructed mutants in which DARS2 was translocated to several chromosomal loci, including sites proximal to oriC and to terC. Replication initiation was inhibited in cells in which DARS2 was translocated to terC‐proximal sites when the cells were grown at 42 °C, although overall binding efficiency of IHF and Fis to the translocated DARS2 was not affected. Inhibition was largely sustained even in cells lacking MatP, a DNA‐binding protein responsible for terC‐specific subchromosomal structure. These results suggest that functional regulation of DARS2 is correlated with its chromosomal location under certain conditions.

Keywords

DNA Replication, DNA, Bacterial, Binding Sites, Origin Recognition Complex, Chromosome Mapping, Replication Origin, Adenosine Diphosphate, DNA-Binding Proteins, Adenosine Triphosphate, Bacterial Proteins, Escherichia coli

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%