Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal of Medical Genetics Part B Neuropsychiatric Genetics
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions

Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder

Authors: Nievergelt, C M; Kripke, D F; Barrett, T B; Burg, E; Remick, R A; Sadovnick, A D; McElroy, S L; +3 Authors

Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder

Abstract

AbstractBipolar affective disorder (BPAD) is suspected to arise in part from malfunctions of the circadian system, a system that enables adaptation to a daily and seasonally cycling environment. Genetic variations altering functions of genes involved with the input to the circadian clock, in the molecular feedback loops constituting the circadian oscillatory mechanism itself, or in the regulatory output systems could influence BPAD as a result. Several human circadian system genes have been identified and localized recently, and a comparison with linkage hotspots for BPAD has revealed some correspondences. We have assessed evidence for linkage and association involving polymorphisms in 10 circadian clock genes (ARNTL, CLOCK, CRY2, CSNK1ε, DBP, GSK3β, NPAS2, PER1, PER2, and PER3) to BPAD. Linkage analysis in 52 affected families showed suggestive evidence for linkage to CSNK1ε. This finding was not substantiated in the association study. Fifty‐two SNPs in 10 clock genes were genotyped in 185 parent proband triads. Single SNP TDT analyses showed no evidence for association to BPAD. However, more powerful haplotype analyses suggest two candidates deserving further studies. Haplotypes in ARNTL and PER3 were found to be significantly associated with BPAD via single‐gene permutation tests (PG = 0.025 and 0.008, respectively). The most suggestive haplotypes in PER3 showed a Bonferroni‐corrected P‐value of PGC = 0.07. These two genes have previously been implicated in circadian rhythm sleep disorders and affective disorders. With correction for the number of genes considered and tests conducted, these data do not provide statistically significant evidence for association. However, the trends for ARNTL and PER3 are suggestive of their involvement in bipolar disorder and warrant further study in a larger sample. © 2006 Wiley‐Liss, Inc.

Country
United States
Keywords

Male, Bipolar Disorder, genetic association, Genotype, manic-depressive illness, Polymorphism, Single Nucleotide, Linkage Disequilibrium, genetic linkage, Basic Helix-Loop-Helix Transcription Factors, Humans, Genetic Predisposition to Disease, Family Health, BMAL1, PER3, ARNTL Transcription Factors, Chromosome Mapping, Nuclear Proteins, Period Circadian Proteins, Circadian Rhythm, Haplotypes, Female, Microsatellite Repeats, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    261
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
261
Top 1%
Top 10%
Top 1%
Green
bronze