Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Coatingsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Coatings
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Coatings
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions

Polyphenol-Rich Purified Bioactive Fraction Isolated from Terminalia catappa L.: UHPLC-MS/MS-Based Metabolite Identification and Evaluation of Their Antimicrobial Potential

Authors: Tumakuru Nataraj Sowmya; Koteshwar Anandrao Raveesha;

Polyphenol-Rich Purified Bioactive Fraction Isolated from Terminalia catappa L.: UHPLC-MS/MS-Based Metabolite Identification and Evaluation of Their Antimicrobial Potential

Abstract

Background: Antimicrobial resistance is a major threat to humankind and the advancement of resistance due to genetic modifications and other defense mechanisms that make the current antibiotics ineffective or less efficacious. Objective: This investigation aims to isolate bioactive compounds from the leaf acetone extract of Terminalia catappa and to evaluate their antimicrobial potential against human pathogenic organisms. Materials and Methods: The bioactive extract was subjected to column chromatography. The fractions were assessed for their minimum inhibitory concentration, minimum fungicidal concentration, and time kill assays. UHPLC-MS/MS analysis was used to identify the bioactive molecules in the fraction. Results: The isolated fraction exhibited antimicrobial activity, with the most sensitive being Staphylococcus aureus (clinical isolate) and Methicillin Resistant Staphylococcus aureus 1503 (0.097 mg/mL), and the fungi Trichophyton rubrum and Candida albicans were inhibited at 0.097 mg/mL. The time kill assay exhibited bactericidal properties towards S. aureus (clinical isolate) and Salmonella typhi (MTCC 733). Additionally, MRSA 1503 and Proteus vulgaris exhibited bacteriostatic activities. The UHPLC-MS/MS analysis revealed that the fraction was rich in polyphenols. Alkaloids and some ellagitannins were identified for the first time. Conclusion: The results highlight the significant inhibition of multidrug-resistant MRSA strains and fungi by the polyphenol-rich fraction. The investigation reveals the potential use of the identified compounds for antimicrobial use, which could lower the implication of multidrug resistance.

Country
India
Keywords

<i>Terminalia</i>, 570, <i>Trichosporon asahii</i>, Botany, MRSA, alkaloids, flavonoid glycosides, Combretaceae, multidrug resistance, bioactive molecules, UHPLC-MS/MS, 616, time kill assay

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
gold