Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Amino Acids
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Amino Acids
Article . 2022
versions View all 6 versions

Meta-proteomic analysis of two mammoth’s trunks by EVA technology and high-resolution mass spectrometry for an indirect picture of their habitat and the characterization of the collagen type I, alpha-1 and alpha-2 sequence

Authors: A. Cucina; A. Di Francesco; R. Saletti; M. G. G. Pittalà; G. Zilberstein; S. Zilberstein; A. Tikhonov; +4 Authors

Meta-proteomic analysis of two mammoth’s trunks by EVA technology and high-resolution mass spectrometry for an indirect picture of their habitat and the characterization of the collagen type I, alpha-1 and alpha-2 sequence

Abstract

AbstractThe recent paleoproteomic studies, including paleo-metaproteomic analyses, improved our understanding of the dietary of ancient populations, the characterization of past human diseases, the reconstruction of the habitat of ancient species, but also provided new insights into the phylogenetic relationships between extant and extinct species. In this respect, the present work reports the results of the metaproteomic analysis performed on the middle part of a trunk, and on the portion of a trunk tip tissue of two different woolly mammoths some 30,000 years old. In particular, proteins were extracted by applying EVA (Ethylene–Vinyl Acetate studded with hydrophilic and hydrophobic resins) films to the surface of these tissues belonging to two Mammuthus primigenus specimens, discovered in two regions located in the Russian Far East, and then investigated via a shotgun MS-based approach. This approach allowed to obtain two interesting results: (i) an indirect description of the habitat of these two mammoths, and (ii) an improved characterization of the collagen type I, alpha-1 and alpha-2 chains (col1a1 and col1a2). Sequence characterization of the col1a1 and col1a2 highlighted some differences between M. primigenius and other Proboscidea together with the identification of three (two for col1a1, and one for col1a2) potentially diagnostic amino acidic mutations that could be used to reliably distinguish the Mammuthus primigenius with respect to the other two genera of elephantids (i.e., Elephas and Loxodonta), and the extinct American mastodon (i.e., Mammut americanum). The results were validated through the level of deamidation and other diagenetic chemical modifications of the sample peptides, which were used to discriminate the “original” endogenous peptides from contaminant ones. The data have been deposited to the ProteomeXchange with identifier < PXD029558 > .

Country
Italy
Keywords

Proteomics, Technology, Meta-paleoproteomics, Shotgun proteomics, Mammoth, Collagen type I, alpha-1 and alpha-2 sequence, Orbitrap fusion tribrid high-resolution mass spectrometer, Chemical modifcations , Deamidation, alpha-1 and alpha-2 sequence, Chemical modifications, Collagen Type I, Mass Spectrometry, Mammoths, Collagen type I, Shotgun proteomics, Animals, Humans, Ecosystem, Phylogeny, Fossils, Meta-paleoproteomics, Infant, Newborn, Orbitrap fusion tribrid high-resolution mass spectrometer, Mammoth, Collagen type I, alpha-1 and alpha-2 sequence, Deamidation, Original Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Green
gold