Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Lasers in Medical Sc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Lasers in Medical Science
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Evidence for A1 and A3 receptors mediating adenosine-induced intracellular calcium release in the dorsal root ganglion neurons by using confocal microscopy imaging

Authors: Liqin, Zheng; Jiangxu, Chen; Yimei, Huang; Yuhua, Wang; Hongqin, Yang; Yanding, Zhang; Shusen, Xie;

Evidence for A1 and A3 receptors mediating adenosine-induced intracellular calcium release in the dorsal root ganglion neurons by using confocal microscopy imaging

Abstract

Adenosine exerts a key role in analgesia. In the present study, adenosine-induced Ca(2+) responses were revealed by using confocal microscopy imaging in the rat dorsal root ganglia (DRG) neurons in vitro. Our results showed that adenosine could evoke increases in the intracellular Ca(2+) concentration in the DRG neurons. In addition, by application of selective receptor antagonists, two types of receptors, A1R and A3R, were identified to be involved in the adenosine-induced Ca(2+) release from intracellular stores in neurons. Altogether, these results suggest that confocal microscopy imaging combined with fluorescent dyes could help to detect the analgesic-induced ion signaling in single cell.

Related Organizations
Keywords

Neurons, Adenosine, Microscopy, Confocal, Receptor, Adenosine A1, Optical Imaging, Receptor, Adenosine A3, Intracellular Space, Adenosine A3 Receptor Antagonists, Adenosine A1 Receptor Antagonists, Rats, Sprague-Dawley, Ganglia, Spinal, Animals, Calcium, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average