Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellular Physiology ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cellular Physiology and Biochemistry
Article . 2014 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cellular Physiology and Biochemistry
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Notoginsenoside R1 Ameliorates Podocyte Adhesion Under Diabetic Condition Through a3�1Integrin Upregulationin Vitroandin Vivo

Authors: Dingkun Gui; Li Wei; Guihua Jian; Yongping Guo; Jiajun Yang; Niansong Wang;

Notoginsenoside R1 Ameliorates Podocyte Adhesion Under Diabetic Condition Through a3�1Integrin Upregulationin Vitroandin Vivo

Abstract

Decreased expression of α3β1 integrin may contribute to reduction in podocyte adhesion to glomerular basement membrane (GBM), which represents a novel early mechanism leading to diabetic kidney disease (DKD). Here, we examined the protective effects of Notoginsenoside R1 (NR1) on podocyte adhesion and α3β1 integrin expression under diabetic condition in vitro and in vivo.Conditionally immortalized mouse podocytes were exposed to high glucose (HG) with 10 and 100μg /ml of NR1 for 24 h. Podocyte adhesion, albuminuria, oxidative markers, renal histopathology, podocyte number per glomerular volume, integrin-linked kinase (ILK) activity and α3β1 integrin expression were measured in vitro and in vivo.HG decreased podocyte adhesive capacity and α3β1 integrin expression, the main podocyte anchoring dimer to the GBM. However, NR1 ameliorated impaired podocyte adhesive capacity and partially restored α3β1 integrin protein and mRNA expression. These in vitro observations were confirmed in vivo. In streptozotocin(STZ)-induced diabetic rats, treatment with NR1 (5 and 10 mg· kg(-1)· d(-1)) for 12 weeks partially restored the number of podocytes per glomerular volume and glomerular α3β1 integrin expression, as well as ameliorated albuminuria, histopathology and oxidative stress. NR1 also inhibited glomerular ILK activity in diabetic rats.NR1, a novel antioxidant, ameliorated glucose-induced impaired podocyte adhesive capacity and subsequent podocyte depopulation partly through α3β1 integrin upregulation. These findings might provide a potential new therapeutic option for the treatment of DKD.

Related Organizations
Keywords

Ginsenosides, Physiology, Podocytes, Notoginsenoside R1, Integrin alpha3beta1, QD415-436, Biochemistry, Diabetes Mellitus, Experimental, Rats, Mice, Oxidative Stress, Gene Expression Regulation, Oxidative stress, Podocyte adhesion, Glomerular Basement Membrane, Cell Adhesion, QP1-981, Animals, Diabetic Nephropathies, Diabetic condition, α3β1 integrin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
gold