Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Science
Article . 2010 . Peer-reviewed
Data sources: Crossref
Science
Article . 2011
versions View all 4 versions

Identification of Functional Elements and Regulatory Circuits by Drosophila modENCODE

Authors: Roy, Sushmita; Ernst, Jason; Kharchenko, Peter V.; Kheradpour, Pouya; Negre, Nicolas; Eaton, Matthew L.; Landolin, Jane M.; +184 Authors

Identification of Functional Elements and Regulatory Circuits by Drosophila modENCODE

Abstract

From Genome to Regulatory Networks For biologists, having a genome in hand is only the beginning—much more investigation is still needed to characterize how the genome is used to help to produce a functional organism (see the Perspective by Blaxter ). In this vein, Gerstein et al. (p. 1775 ) summarize for the Caenorhabditis elegans genome, and The modENCODE Consortium (p. 1787 ) summarize for the Drosophila melanogaster genome, full transcriptome analyses over developmental stages, genome-wide identification of transcription factor binding sites, and high-resolution maps of chromatin organization. Both studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were characterized. Overall, the studies provide insights into the organization, structure, and function of the two genomes and provide basic information needed to guide and correlate both focused and genome-wide studies.

Keywords

Drosophila Proteins/genetics/metabolism, Transcription, Genetic, Genome, Insect, Histones/metabolism, Genes, Insect, Epigenesis, Genetic, Histones, Gene Mutations, Drosophila Proteins, Gene Regulatory Networks, Amino Acids, Functionals, Promoter Regions, Genetic, Exons, Genomics, Life sciences, Chromatin, Nucleosomes, Drosophila melanogaster/genetics/growth & development/metabolism, Drosophila melanogaster, Flies, Sciences du vivant, Drosophila, 570, 60, Biochimie, biophysique & biologie moléculaire, Chromosomes, 576, Genetics, Animals, Transcription Factors/metabolism, Biology, Life Cycle, Chromatin/genetics/metabolism, RNA, Small Untranslated/genetics/metabolism, Binding Sites, Proteins, Modifications, Computational Biology, Molecular Sequence Annotation, Dna, Computational Biology/methods, Genomics/methods, Genes, Gene Expression Regulation, Rna, Nucleosomes/genetics/metabolism, RNA, Small Untranslated, Peptides, Biochemistry, biophysics & molecular biology, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.01%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1K
Top 0.1%
Top 0.1%
Top 0.01%
hybrid
Related to Research communities