Powered by OpenAIRE graph

MAPK-upstream protein kinase (MUK) regulates the radial migration of immature neurons in telencephalon of mouse embryo

Authors: Syu-ichi Hirai; Atsumi Kawaguchi; Ryutaro Hirasawa; Shigeo Ohno; Masaya Baba; Tetsuo Ohnishi;

MAPK-upstream protein kinase (MUK) regulates the radial migration of immature neurons in telencephalon of mouse embryo

Abstract

The radial migration of differentiating neurons provides an essential step in the generation of laminated neocortex, although its molecular mechanism is not fully understood. We show that the protein levels of a JNK activator kinase, MUK/DLK/ZPK, and JNK activity increase potently and temporally in newly generated neurons in developing mouse telencephalon during radial migration. The ectopic expression of MUK/DLK/ZPK in neural precursor cells in utero impairs radial migration, whereas it allows these cells to leave the ventricular zone and differentiate into neural cells. The MUK/DLK/ZPK protein is associated with dotted structures that are frequently located along microtubules and with Golgi apparatus in cultured embryonic cortical cells. In COS-1 cells, MUK/DLK/ZPK overexpression impairs the radial organization of microtubules without massive depolymerization. These results suggest that MUK/DLK/ZPK and JNK regulate radial cell migration via microtubule-based events.

Related Organizations
Keywords

Neurons, Mice, Inbred ICR, Recombinant Fusion Proteins, Gene Expression, Neocortex, 3T3 Cells, Protein Serine-Threonine Kinases, MAP Kinase Kinase Kinases, Microtubules, Mice, Cell Movement, COS Cells, Chlorocebus aethiops, Animals, Humans, Mitogen-Activated Protein Kinase 9, Mitogen-Activated Protein Kinase 8, Mitogen-Activated Protein Kinases, Cell Line, Transformed, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%