Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2011 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

STAT3 Protein Promotes T-cell Survival and Inhibits Interleukin-2 Production through Up-regulation of Class O Forkhead Transcription Factors

Authors: Hyun-Mee, Oh; Cheng-Rong, Yu; Nady, Golestaneh; Ahjoku, Amadi-Obi; Yun Sang, Lee; Amarachi, Eseonu; Rashid M, Mahdi; +1 Authors

STAT3 Protein Promotes T-cell Survival and Inhibits Interleukin-2 Production through Up-regulation of Class O Forkhead Transcription Factors

Abstract

Much is known about the role of STAT3 in regulating differentiation of interleukin-17-producing Th17 cells, but its function in other lymphocyte subsets is not well understood. In this report, we reveal wide-ranging functions of STAT3 in T-cells and provide evidence that STAT3 is convergence point for mechanisms that regulate lymphocyte quiescence and those controlling T-cell activation and survival. We show here that STAT3 inhibits T-lymphocyte proliferation by up-regulating the expression of Class-O Forkhead transcription factors, which play essential roles in maintaining T-cells in quiescent state. We further show that STAT3 binds directly to FoxO1 or FoxO3a promoter and that STAT3-deficiency resulted in down-regulation of the expression of FoxO1, FoxO3a and FoxO-target genes (IκB and p27Kip1). Compared with wild-type T-cells, STAT3-deficient T-cells produced more IL-2, due in part, to marked decrease in IκB-mediated sequestration of NF-κB in the cytoplasm and resultant enhancement of NF-κB activation. However, the high level of IL-2 production by STAT3-deficient T-cells was partially restored to normal levels by overexpressing FoxO1. It is notable that their exaggerated increase in IL-2 production rendered STAT3-deficient lymphocytes more susceptible to activation-induced cell death, suggesting that STAT3 might protect T-cells from apoptosis by limiting their production of IL-2 through up-regulation of FoxO1/FoxO3a expression. Moreover, we found that STAT3 enhanced survival of activated T-cells by up-regulating OX-40 and Bcl-2 while down-regulating FasL and Bad expression, suggesting that similar to role of FoxOs in regulating the lifespan of worms, STAT3 and FoxO pathways converge to regulate lifespan of T-lymphocytes.

Keywords

CD4-Positive T-Lymphocytes, STAT3 Transcription Factor, Forkhead Box Protein O1, Interleukins, T-Lymphocytes, Forkhead Box Protein O3, NF-kappa B, Forkhead Transcription Factors, CD8-Positive T-Lymphocytes, Up-Regulation, Mice, Inbred C57BL, Mice, Animals, Cytokines, Interleukin-2, Th17 Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Top 10%
Top 10%
Top 10%
gold