Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The EMBO Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article . 1998 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article
Data sources: UnpayWall
The EMBO Journal
Article . 1998
versions View all 2 versions

A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene

Authors: Ping Li; Véronique Lefebvre; Benoit de Crombrugghe;

A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene

Abstract

Transcripts for a new form of Sox5, called L-Sox5, and Sox6 are coexpressed with Sox9 in all chondrogenic sites of mouse embryos. A coiled-coil domain located in the N-terminal part of L-Sox5, and absent in Sox5, showed >90% identity with a similar domain in Sox6 and mediated homodimerization and heterodimerization with Sox6. Dimerization of L-Sox5/Sox6 greatly increased efficiency of binding of the two Sox proteins to DNA containing adjacent HMG sites. L-Sox5, Sox6 and Sox9 cooperatively activated expression of the chondrocyte differentiation marker Col2a1 in 10T1/2 and MC615 cells. A 48 bp chondrocyte-specific enhancer in this gene, which contains several HMG-like sites that are necessary for enhancer activity, bound the three Sox proteins and was cooperatively activated by the three Sox proteins in non-chondrogenic cells. Our data suggest that L-Sox5/Sox6 and Sox9, which belong to two different classes of Sox transcription factors, cooperate with each other in expression of Col2a1 and possibly other genes of the chondrocytic program.

Keywords

DNA, Complementary, Molecular Sequence Data, High Mobility Group Proteins, Gene Expression Regulation, Developmental, Nuclear Proteins, Cell Differentiation, SOX9 Transcription Factor, Protein Structure, Secondary, DNA-Binding Proteins, Mice, Cartilage, Enhancer Elements, Genetic, Animals, Amino Acid Sequence, Collagen, RNA, Messenger, Chondrogenesis, Dimerization, SOXD Transcription Factors, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    734
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
734
Top 1%
Top 1%
Top 1%
gold