Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/s0076-...
Part of book or chapter of book . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions

An Approach to Studying the Localization and Dynamics of Eukaryotic Translation Factors in Live Yeast Cells

Authors: Campbell, Susan G.; Ashe, Mark P.;

An Approach to Studying the Localization and Dynamics of Eukaryotic Translation Factors in Live Yeast Cells

Abstract

The discovery of Green Fluorescent Protein (GFP) and the development of technology that allows specific proteins to be tagged with GFP has fundamentally altered the types of question that can be asked using cell biological methods. It is now possible not only to study where a protein is within a cell, but also feasible to study the precise dynamics of protein movement within living cells. We have exploited these technical developments and applied them to the study of translation initiation factors in yeast, focusing particularly on the key regulated guanine nucleotide exchange step involving eIF2B and eIF2. This chapter summarizes current methodologies for the tagging and visualization of GFP-tagged proteins involved in translation initiation in live yeast cells.

Country
United Kingdom
Related Organizations
Keywords

Recombinant Fusion Proteins, Cell Culture Techniques, Affinity Labels, Biological Transport, Saccharomyces cerevisiae, Models, Biological, Transformation, Genetic, Microscopy, Fluorescence, RNA, Tissue Distribution, Eukaryotic Initiation Factors, Fluorescence Recovery After Photobleaching

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average